Conditions | 31 |
Total Lines | 160 |
Code Lines | 73 |
Lines | 0 |
Ratio | 0 % |
Tests | 57 |
CRAP Score | 31 |
Changes | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like abydos.distance._jaro.sim_jaro_winkler() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
261 | 1 | def sim_jaro_winkler( |
|
262 | src, |
||
263 | tar, |
||
264 | qval=1, |
||
265 | mode='winkler', |
||
266 | long_strings=False, |
||
267 | boost_threshold=0.7, |
||
268 | scaling_factor=0.1, |
||
269 | ): |
||
270 | """Return the Jaro or Jaro-Winkler similarity of two strings. |
||
271 | |||
272 | Jaro(-Winkler) distance is a string edit distance initially proposed by |
||
273 | Jaro and extended by Winkler :cite:`Jaro:1989,Winkler:1990`. |
||
274 | |||
275 | This is Python based on the C code for strcmp95: |
||
276 | http://web.archive.org/web/20110629121242/http://www.census.gov/geo/msb/stand/strcmp.c |
||
277 | :cite:`Winkler:1994`. The above file is a US Government publication and, |
||
278 | accordingly, in the public domain. |
||
279 | |||
280 | :param str src: source string for comparison |
||
281 | :param str tar: target string for comparison |
||
282 | :param int qval: the length of each q-gram (defaults to 1: character-wise |
||
283 | matching) |
||
284 | :param str mode: indicates which variant of this distance metric to |
||
285 | compute: |
||
286 | |||
287 | - 'winkler' -- computes the Jaro-Winkler distance (default) which |
||
288 | increases the score for matches near the start of the word |
||
289 | - 'jaro' -- computes the Jaro distance |
||
290 | |||
291 | The following arguments apply only when mode is 'winkler': |
||
292 | |||
293 | :param bool long_strings: set to True to "Increase the probability of a |
||
294 | match when the number of matched characters is large. This option |
||
295 | allows for a little more tolerance when the strings are large. It is |
||
296 | not an appropriate test when comparing fixed length fields such as |
||
297 | phone and social security numbers." |
||
298 | :param float boost_threshold: a value between 0 and 1, below which the |
||
299 | Winkler boost is not applied (defaults to 0.7) |
||
300 | :param float scaling_factor: a value between 0 and 0.25, indicating by how |
||
301 | much to boost scores for matching prefixes (defaults to 0.1) |
||
302 | |||
303 | :returns: Jaro or Jaro-Winkler similarity |
||
304 | :rtype: float |
||
305 | |||
306 | >>> round(sim_jaro_winkler('cat', 'hat'), 12) |
||
307 | 0.777777777778 |
||
308 | >>> round(sim_jaro_winkler('Niall', 'Neil'), 12) |
||
309 | 0.805 |
||
310 | >>> round(sim_jaro_winkler('aluminum', 'Catalan'), 12) |
||
311 | 0.60119047619 |
||
312 | >>> round(sim_jaro_winkler('ATCG', 'TAGC'), 12) |
||
313 | 0.833333333333 |
||
314 | |||
315 | >>> round(sim_jaro_winkler('cat', 'hat', mode='jaro'), 12) |
||
316 | 0.777777777778 |
||
317 | >>> round(sim_jaro_winkler('Niall', 'Neil', mode='jaro'), 12) |
||
318 | 0.783333333333 |
||
319 | >>> round(sim_jaro_winkler('aluminum', 'Catalan', mode='jaro'), 12) |
||
320 | 0.60119047619 |
||
321 | >>> round(sim_jaro_winkler('ATCG', 'TAGC', mode='jaro'), 12) |
||
322 | 0.833333333333 |
||
323 | """ |
||
324 | 1 | if mode == 'winkler': |
|
325 | 1 | if boost_threshold > 1 or boost_threshold < 0: |
|
326 | 1 | raise ValueError( |
|
327 | 'Unsupported boost_threshold assignment; ' |
||
328 | + 'boost_threshold must be between 0 and 1.' |
||
329 | ) |
||
330 | 1 | if scaling_factor > 0.25 or scaling_factor < 0: |
|
331 | 1 | raise ValueError( |
|
332 | 'Unsupported scaling_factor assignment; ' |
||
333 | + 'scaling_factor must be between 0 and 0.25.' |
||
334 | ) |
||
335 | |||
336 | 1 | if src == tar: |
|
337 | 1 | return 1.0 |
|
338 | |||
339 | 1 | src = QGrams(src.strip(), qval).ordered_list |
|
340 | 1 | tar = QGrams(tar.strip(), qval).ordered_list |
|
341 | |||
342 | 1 | lens = len(src) |
|
343 | 1 | lent = len(tar) |
|
344 | |||
345 | # If either string is blank - return - added in Version 2 |
||
346 | 1 | if lens == 0 or lent == 0: |
|
347 | 1 | return 0.0 |
|
348 | |||
349 | 1 | if lens > lent: |
|
350 | 1 | search_range = lens |
|
351 | 1 | minv = lent |
|
352 | else: |
||
353 | 1 | search_range = lent |
|
354 | 1 | minv = lens |
|
355 | |||
356 | # Zero out the flags |
||
357 | 1 | src_flag = [0] * search_range |
|
358 | 1 | tar_flag = [0] * search_range |
|
359 | 1 | search_range = max(0, search_range // 2 - 1) |
|
360 | |||
361 | # Looking only within the search range, count and flag the matched pairs. |
||
362 | 1 | num_com = 0 |
|
363 | 1 | yl1 = lent - 1 |
|
364 | 1 | for i in range(lens): |
|
365 | 1 | low_lim = (i - search_range) if (i >= search_range) else 0 |
|
366 | 1 | hi_lim = (i + search_range) if ((i + search_range) <= yl1) else yl1 |
|
367 | 1 | for j in range(low_lim, hi_lim + 1): |
|
368 | 1 | if (tar_flag[j] == 0) and (tar[j] == src[i]): |
|
369 | 1 | tar_flag[j] = 1 |
|
370 | 1 | src_flag[i] = 1 |
|
371 | 1 | num_com += 1 |
|
372 | 1 | break |
|
373 | |||
374 | # If no characters in common - return |
||
375 | 1 | if num_com == 0: |
|
376 | 1 | return 0.0 |
|
377 | |||
378 | # Count the number of transpositions |
||
379 | 1 | k = n_trans = 0 |
|
380 | 1 | for i in range(lens): |
|
381 | 1 | if src_flag[i] != 0: |
|
382 | 1 | j = 0 |
|
383 | 1 | for j in range(k, lent): # pragma: no branch |
|
384 | 1 | if tar_flag[j] != 0: |
|
385 | 1 | k = j + 1 |
|
386 | 1 | break |
|
387 | 1 | if src[i] != tar[j]: |
|
388 | 1 | n_trans += 1 |
|
389 | 1 | n_trans //= 2 |
|
390 | |||
391 | # Main weight computation for Jaro distance |
||
392 | 1 | weight = num_com / lens + num_com / lent + (num_com - n_trans) / num_com |
|
393 | 1 | weight /= 3.0 |
|
394 | |||
395 | # Continue to boost the weight if the strings are similar |
||
396 | # This is the Winkler portion of Jaro-Winkler distance |
||
397 | 1 | if mode == 'winkler' and weight > boost_threshold: |
|
398 | |||
399 | # Adjust for having up to the first 4 characters in common |
||
400 | 1 | j = 4 if (minv >= 4) else minv |
|
401 | 1 | i = 0 |
|
402 | 1 | while (i < j) and (src[i] == tar[i]): |
|
403 | 1 | i += 1 |
|
404 | 1 | weight += i * scaling_factor * (1.0 - weight) |
|
405 | |||
406 | # Optionally adjust for long strings. |
||
407 | |||
408 | # After agreeing beginning chars, at least two more must agree and |
||
409 | # the agreeing characters must be > .5 of remaining characters. |
||
410 | 1 | if ( |
|
411 | long_strings |
||
412 | and (minv > 4) |
||
413 | and (num_com > i + 1) |
||
414 | and (2 * num_com >= minv + i) |
||
415 | ): |
||
416 | 1 | weight += (1.0 - weight) * ( |
|
417 | (num_com - i - 1) / (lens + lent - i * 2 + 2) |
||
418 | ) |
||
419 | |||
420 | 1 | return weight |
|
421 | |||
490 |