Total Complexity | 43 |
Total Lines | 368 |
Duplicated Lines | 3.53 % |
Coverage | 100% |
Changes | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like abydos.distance._discounted_levenshtein often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | # -*- coding: utf-8 -*- |
||
2 | |||
3 | # Copyright 2019 by Christopher C. Little. |
||
4 | # This file is part of Abydos. |
||
5 | # |
||
6 | # Abydos is free software: you can redistribute it and/or modify |
||
7 | # it under the terms of the GNU General Public License as published by |
||
8 | # the Free Software Foundation, either version 3 of the License, or |
||
9 | # (at your option) any later version. |
||
10 | # |
||
11 | # Abydos is distributed in the hope that it will be useful, |
||
12 | # but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
13 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
14 | # GNU General Public License for more details. |
||
15 | # |
||
16 | # You should have received a copy of the GNU General Public License |
||
17 | # along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
||
18 | |||
19 | 1 | """abydos.distance._discounted_levenshtein. |
|
20 | |||
21 | Discounted Levenshtein edit distance |
||
22 | """ |
||
23 | |||
24 | 1 | from __future__ import ( |
|
25 | absolute_import, |
||
26 | division, |
||
27 | print_function, |
||
28 | unicode_literals, |
||
29 | ) |
||
30 | |||
31 | 1 | from math import log |
|
32 | |||
33 | 1 | import numpy as np |
|
34 | |||
35 | 1 | from six.moves import range |
|
36 | |||
37 | 1 | from ._levenshtein import Levenshtein |
|
38 | |||
39 | 1 | __all__ = ['DiscountedLevenshtein'] |
|
40 | |||
41 | |||
42 | 1 | class DiscountedLevenshtein(Levenshtein): |
|
43 | """Discounted Levenshtein distance. |
||
44 | |||
45 | This is a variant of Levenshtein distance for which edits later in a string |
||
46 | have discounted cost, on the theory that earlier edits are less likely |
||
47 | than later ones. |
||
48 | |||
49 | .. versionadded:: 0.4.1 |
||
50 | """ |
||
51 | |||
52 | 1 | def __init__( |
|
53 | self, |
||
54 | mode='lev', |
||
55 | normalizer=max, |
||
56 | discount_from=1, |
||
57 | discount_func='log', |
||
58 | vowels='aeiou', |
||
59 | **kwargs |
||
60 | ): |
||
61 | """Initialize DiscountedLevenshtein instance. |
||
62 | |||
63 | Parameters |
||
64 | ---------- |
||
65 | mode : str |
||
66 | Specifies a mode for computing the discounted Levenshtein distance: |
||
67 | |||
68 | - ``lev`` (default) computes the ordinary Levenshtein distance, |
||
69 | in which edits may include inserts, deletes, and |
||
70 | substitutions |
||
71 | - ``osa`` computes the Optimal String Alignment distance, in |
||
72 | which edits may include inserts, deletes, substitutions, and |
||
73 | transpositions but substrings may only be edited once |
||
74 | |||
75 | normalizer : function |
||
76 | A function that takes an list and computes a normalization term |
||
77 | by which the edit distance is divided (max by default). Another |
||
78 | good option is the sum function. |
||
79 | discount_from : int or str |
||
80 | If an int is supplied, this is the first character whose edit cost |
||
81 | will be discounted. If the str ``coda`` is supplied, discounting |
||
82 | will start with the first non-vowel after the first vowel (the |
||
83 | first syllable coda). |
||
84 | discount_func : str or function |
||
85 | The two supported str arguments are ``log``, for a logarithmic |
||
86 | discount function, and ``exp`` for a exponential discount function. |
||
87 | See notes below for information on how to supply your own |
||
88 | discount function. |
||
89 | vowels : str |
||
90 | These are the letters to consider as vowels when discount_from is |
||
91 | set to ``coda``. It defaults to the English vowels 'aeiou', but |
||
92 | it would be reasonable to localize this to other languages or to |
||
93 | add orthographic semi-vowels like 'y', 'w', and even 'h'. |
||
94 | **kwargs |
||
95 | Arbitrary keyword arguments |
||
96 | |||
97 | Notes |
||
98 | ----- |
||
99 | This class is highly experimental and will need additional tuning. |
||
100 | |||
101 | The discount function can be passed as a callable function. It should |
||
102 | expect an integer as its only argument and return a float, ideally |
||
103 | less than or equal to 1.0. The argument represents the degree of |
||
104 | discounting to apply. |
||
105 | |||
106 | |||
107 | .. versionadded:: 0.4.1 |
||
108 | |||
109 | """ |
||
110 | 1 | super(DiscountedLevenshtein, self).__init__(**kwargs) |
|
111 | 1 | self._mode = mode |
|
112 | 1 | self._normalizer = normalizer |
|
113 | 1 | self._discount_from = discount_from |
|
114 | 1 | self._vowels = set(vowels.lower()) |
|
115 | 1 | if callable(discount_func): |
|
116 | 1 | self._cost = discount_func |
|
117 | 1 | elif discount_func == 'exp': |
|
118 | 1 | self._cost = self._exp_discount |
|
119 | else: |
||
120 | 1 | self._cost = self._log_discount |
|
121 | |||
122 | 1 | @staticmethod |
|
123 | def _log_discount(discounts): |
||
124 | 1 | return 1 / (log(1 + discounts / 5) + 1) |
|
125 | |||
126 | 1 | @staticmethod |
|
127 | def _exp_discount(discounts): |
||
128 | 1 | return 1 / (discounts + 1) ** 0.2 |
|
129 | |||
130 | 1 | def _alignment_matrix(self, src, tar, backtrace=True): |
|
131 | """Return the Levenshtein alignment matrix. |
||
132 | |||
133 | Parameters |
||
134 | ---------- |
||
135 | src : str |
||
136 | Source string for comparison |
||
137 | tar : str |
||
138 | Target string for comparison |
||
139 | backtrace : bool |
||
140 | Return the backtrace matrix as well |
||
141 | |||
142 | Returns |
||
143 | ------- |
||
144 | numpy.ndarray or tuple(numpy.ndarray, numpy.ndarray) |
||
145 | The alignment matrix and (optionally) the backtrace matrix |
||
146 | |||
147 | |||
148 | .. versionadded:: 0.4.1 |
||
149 | |||
150 | """ |
||
151 | 1 | src_len = len(src) |
|
152 | 1 | tar_len = len(tar) |
|
153 | |||
154 | 1 | if self._discount_from == 'coda': |
|
155 | 1 | discount_from = [0, 0] |
|
156 | |||
157 | 1 | src_voc = src.lower() |
|
158 | 1 | for i in range(len(src_voc)): |
|
159 | 1 | if src_voc[i] in self._vowels: |
|
160 | 1 | discount_from[0] = i |
|
161 | 1 | break |
|
162 | 1 | for i in range(discount_from[0], len(src_voc)): |
|
163 | 1 | if src_voc[i] not in self._vowels: |
|
164 | 1 | discount_from[0] = i |
|
165 | 1 | break |
|
166 | else: |
||
167 | 1 | discount_from[0] += 1 |
|
168 | |||
169 | 1 | tar_voc = tar.lower() |
|
170 | 1 | for i in range(len(tar_voc)): |
|
171 | 1 | if tar_voc[i] in self._vowels: |
|
172 | 1 | discount_from[1] = i |
|
173 | 1 | break |
|
174 | 1 | for i in range(discount_from[1], len(tar_voc)): |
|
175 | 1 | if tar_voc[i] not in self._vowels: |
|
176 | 1 | discount_from[1] = i |
|
177 | 1 | break |
|
178 | else: |
||
179 | 1 | discount_from[1] += 1 |
|
180 | |||
181 | 1 | elif isinstance(self._discount_from, int): |
|
182 | 1 | discount_from = [self._discount_from, self._discount_from] |
|
183 | else: |
||
184 | 1 | discount_from = [1, 1] |
|
185 | |||
186 | 1 | d_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.float) |
|
187 | 1 | if backtrace: |
|
188 | 1 | trace_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.int8) |
|
189 | 1 | for i in range(1, src_len + 1): |
|
190 | 1 | d_mat[i, 0] = d_mat[i - 1, 0] + self._cost( |
|
191 | max(0, i - discount_from[0]) |
||
192 | ) |
||
193 | 1 | if backtrace: |
|
194 | 1 | trace_mat[i, 0] = 1 |
|
195 | 1 | for j in range(1, tar_len + 1): |
|
196 | 1 | d_mat[0, j] = d_mat[0, j - 1] + self._cost( |
|
197 | max(0, j - discount_from[1]) |
||
198 | ) |
||
199 | 1 | if backtrace: |
|
200 | 1 | trace_mat[0, j] = 0 |
|
201 | 1 | for i in range(src_len): |
|
202 | 1 | i_extend = self._cost(max(0, i - discount_from[0])) |
|
203 | 1 | for j in range(tar_len): |
|
204 | 1 | traces = ((i + 1, j), (i, j + 1), (i, j)) |
|
205 | 1 | cost = min(i_extend, self._cost(max(0, j - discount_from[1]))) |
|
206 | 1 | opts = ( |
|
207 | d_mat[traces[0]] + cost, # ins |
||
208 | d_mat[traces[1]] + cost, # del |
||
209 | d_mat[traces[2]] |
||
210 | + (cost if src[i] != tar[j] else 0), # sub/== |
||
211 | ) |
||
212 | 1 | d_mat[i + 1, j + 1] = min(opts) |
|
213 | 1 | if backtrace: |
|
214 | 1 | trace_mat[i + 1, j + 1] = int(np.argmin(opts)) |
|
215 | |||
216 | 1 | View Code Duplication | if self._mode == 'osa': |
|
|||
217 | 1 | if ( |
|
218 | i + 1 > 1 |
||
219 | and j + 1 > 1 |
||
220 | and src[i] == tar[j - 1] |
||
221 | and src[i - 1] == tar[j] |
||
222 | ): |
||
223 | # transposition |
||
224 | 1 | d_mat[i + 1, j + 1] = min( |
|
225 | d_mat[i + 1, j + 1], d_mat[i - 1, j - 1] + cost |
||
226 | ) |
||
227 | 1 | if backtrace: |
|
228 | 1 | trace_mat[i + 1, j + 1] = 2 |
|
229 | 1 | if backtrace: |
|
230 | 1 | return d_mat, trace_mat |
|
231 | 1 | return d_mat |
|
232 | |||
233 | 1 | def dist_abs(self, src, tar): |
|
234 | """Return the Levenshtein distance between two strings. |
||
235 | |||
236 | Parameters |
||
237 | ---------- |
||
238 | src : str |
||
239 | Source string for comparison |
||
240 | tar : str |
||
241 | Target string for comparison |
||
242 | |||
243 | Returns |
||
244 | ------- |
||
245 | float (may return a float if cost has float values) |
||
246 | The Levenshtein distance between src & tar |
||
247 | |||
248 | Examples |
||
249 | -------- |
||
250 | >>> cmp = DiscountedLevenshtein() |
||
251 | >>> cmp.dist_abs('cat', 'hat') |
||
252 | 1 |
||
253 | >>> cmp.dist_abs('Niall', 'Neil') |
||
254 | 2.526064024369237 |
||
255 | >>> cmp.dist_abs('aluminum', 'Catalan') |
||
256 | 5.053867269967515 |
||
257 | >>> cmp.dist_abs('ATCG', 'TAGC') |
||
258 | 2.594032108779918 |
||
259 | |||
260 | >>> cmp = DiscountedLevenshtein(mode='osa') |
||
261 | >>> cmp.dist_abs('ATCG', 'TAGC') |
||
262 | 1.7482385137517997 |
||
263 | >>> cmp.dist_abs('ACTG', 'TAGC') |
||
264 | 3.342270622531718 |
||
265 | |||
266 | |||
267 | .. versionadded:: 0.4.1 |
||
268 | |||
269 | """ |
||
270 | 1 | src_len = len(src) |
|
271 | 1 | tar_len = len(tar) |
|
272 | |||
273 | 1 | if src == tar: |
|
274 | 1 | return 0.0 |
|
275 | |||
276 | 1 | if isinstance(self._discount_from, int): |
|
277 | 1 | discount_from = self._discount_from |
|
278 | else: |
||
279 | 1 | discount_from = 1 |
|
280 | |||
281 | 1 | if not src: |
|
282 | 1 | return sum( |
|
283 | self._cost(max(0, pos - discount_from)) |
||
284 | for pos in range(tar_len) |
||
285 | ) |
||
286 | 1 | if not tar: |
|
287 | 1 | return sum( |
|
288 | self._cost(max(0, pos - discount_from)) |
||
289 | for pos in range(src_len) |
||
290 | ) |
||
291 | |||
292 | 1 | d_mat = self._alignment_matrix(src, tar, backtrace=False) |
|
293 | |||
294 | 1 | if int(d_mat[src_len, tar_len]) == d_mat[src_len, tar_len]: |
|
295 | 1 | return int(d_mat[src_len, tar_len]) |
|
296 | else: |
||
297 | 1 | return d_mat[src_len, tar_len] |
|
298 | |||
299 | 1 | def dist(self, src, tar): |
|
300 | """Return the normalized Levenshtein distance between two strings. |
||
301 | |||
302 | The Levenshtein distance is normalized by dividing the Levenshtein |
||
303 | distance (calculated by any of the three supported methods) by the |
||
304 | greater of the number of characters in src times the cost of a delete |
||
305 | and the number of characters in tar times the cost of an insert. |
||
306 | For the case in which all operations have :math:`cost = 1`, this is |
||
307 | equivalent to the greater of the length of the two strings src & tar. |
||
308 | |||
309 | Parameters |
||
310 | ---------- |
||
311 | src : str |
||
312 | Source string for comparison |
||
313 | tar : str |
||
314 | Target string for comparison |
||
315 | |||
316 | Returns |
||
317 | ------- |
||
318 | float |
||
319 | The normalized Levenshtein distance between src & tar |
||
320 | |||
321 | Examples |
||
322 | -------- |
||
323 | >>> cmp = DiscountedLevenshtein() |
||
324 | >>> cmp.dist('cat', 'hat') |
||
325 | 0.3513958291799864 |
||
326 | >>> cmp.dist('Niall', 'Neil') |
||
327 | 0.5909885886270658 |
||
328 | >>> cmp.dist('aluminum', 'Catalan') |
||
329 | 0.8348163322045603 |
||
330 | >>> cmp.dist('ATCG', 'TAGC') |
||
331 | 0.7217609721523955 |
||
332 | |||
333 | |||
334 | .. versionadded:: 0.4.1 |
||
335 | |||
336 | """ |
||
337 | 1 | if src == tar: |
|
338 | 1 | return 0 |
|
339 | |||
340 | 1 | if isinstance(self._discount_from, int): |
|
341 | 1 | discount_from = self._discount_from |
|
342 | else: |
||
343 | 1 | discount_from = 1 |
|
344 | |||
345 | 1 | src_len = len(src) |
|
346 | 1 | tar_len = len(tar) |
|
347 | |||
348 | 1 | normalize_term = self._normalizer( |
|
349 | [ |
||
350 | sum( |
||
351 | self._cost(max(0, pos - discount_from)) |
||
352 | for pos in range(src_len) |
||
353 | ), |
||
354 | sum( |
||
355 | self._cost(max(0, pos - discount_from)) |
||
356 | for pos in range(tar_len) |
||
357 | ), |
||
358 | ] |
||
359 | ) |
||
360 | |||
361 | 1 | return self.dist_abs(src, tar) / normalize_term |
|
362 | |||
363 | |||
364 | if __name__ == '__main__': |
||
365 | import doctest |
||
366 | |||
367 | doctest.testmod() |
||
368 |