|
1
|
|
|
# -*- coding: utf-8 -*- |
|
2
|
|
|
|
|
3
|
|
|
# Copyright 2019 by Christopher C. Little. |
|
4
|
|
|
# This file is part of Abydos. |
|
5
|
|
|
# |
|
6
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
|
7
|
|
|
# it under the terms of the GNU General Public License as published by |
|
8
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
|
9
|
|
|
# (at your option) any later version. |
|
10
|
|
|
# |
|
11
|
|
|
# Abydos is distributed in the hope that it will be useful, |
|
12
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
13
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
14
|
|
|
# GNU General Public License for more details. |
|
15
|
|
|
# |
|
16
|
|
|
# You should have received a copy of the GNU General Public License |
|
17
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
|
18
|
|
|
|
|
19
|
1 |
|
"""abydos.distance._discounted_levenshtein. |
|
20
|
|
|
|
|
21
|
|
|
Discounted Levenshtein edit distance |
|
22
|
|
|
""" |
|
23
|
|
|
|
|
24
|
1 |
|
from __future__ import ( |
|
25
|
|
|
absolute_import, |
|
26
|
|
|
division, |
|
27
|
|
|
print_function, |
|
28
|
|
|
unicode_literals, |
|
29
|
|
|
) |
|
30
|
|
|
|
|
31
|
1 |
|
from math import log |
|
32
|
|
|
|
|
33
|
1 |
|
import numpy as np |
|
34
|
|
|
|
|
35
|
1 |
|
from six.moves import range |
|
36
|
|
|
|
|
37
|
1 |
|
from ._levenshtein import Levenshtein |
|
38
|
|
|
|
|
39
|
1 |
|
__all__ = ['DiscountedLevenshtein'] |
|
40
|
|
|
|
|
41
|
|
|
|
|
42
|
1 |
|
class DiscountedLevenshtein(Levenshtein): |
|
43
|
|
|
"""Discounted Levenshtein distance. |
|
44
|
|
|
|
|
45
|
|
|
This is a variant of Levenshtein distance for which edits later in a string |
|
46
|
|
|
have discounted cost, on the theory that earlier edits are less likely |
|
47
|
|
|
than later ones. |
|
48
|
|
|
|
|
49
|
|
|
.. versionadded:: 0.4.1 |
|
50
|
|
|
""" |
|
51
|
|
|
|
|
52
|
1 |
|
def __init__( |
|
53
|
|
|
self, |
|
54
|
|
|
mode='lev', |
|
55
|
|
|
normalizer=max, |
|
56
|
|
|
discount_from=1, |
|
57
|
|
|
discount_func='log', |
|
58
|
|
|
vowels='aeiou', |
|
59
|
|
|
**kwargs |
|
60
|
|
|
): |
|
61
|
|
|
"""Initialize DiscountedLevenshtein instance. |
|
62
|
|
|
|
|
63
|
|
|
Parameters |
|
64
|
|
|
---------- |
|
65
|
|
|
mode : str |
|
66
|
|
|
Specifies a mode for computing the discounted Levenshtein distance: |
|
67
|
|
|
|
|
68
|
|
|
- ``lev`` (default) computes the ordinary Levenshtein distance, |
|
69
|
|
|
in which edits may include inserts, deletes, and |
|
70
|
|
|
substitutions |
|
71
|
|
|
- ``osa`` computes the Optimal String Alignment distance, in |
|
72
|
|
|
which edits may include inserts, deletes, substitutions, and |
|
73
|
|
|
transpositions but substrings may only be edited once |
|
74
|
|
|
|
|
75
|
|
|
normalizer : function |
|
76
|
|
|
A function that takes an list and computes a normalization term |
|
77
|
|
|
by which the edit distance is divided (max by default). Another |
|
78
|
|
|
good option is the sum function. |
|
79
|
|
|
discount_from : int or str |
|
80
|
|
|
If an int is supplied, this is the first character whose edit cost |
|
81
|
|
|
will be discounted. If the str ``coda`` is supplied, discounting |
|
82
|
|
|
will start with the first non-vowel after the first vowel (the |
|
83
|
|
|
first syllable coda). |
|
84
|
|
|
discount_func : str or function |
|
85
|
|
|
The two supported str arguments are ``log``, for a logarithmic |
|
86
|
|
|
discount function, and ``exp`` for a exponential discount function. |
|
87
|
|
|
See notes below for information on how to supply your own |
|
88
|
|
|
discount function. |
|
89
|
|
|
vowels : str |
|
90
|
|
|
These are the letters to consider as vowels when discount_from is |
|
91
|
|
|
set to ``coda``. It defaults to the English vowels 'aeiou', but |
|
92
|
|
|
it would be reasonable to localize this to other languages or to |
|
93
|
|
|
add orthographic semi-vowels like 'y', 'w', and even 'h'. |
|
94
|
|
|
**kwargs |
|
95
|
|
|
Arbitrary keyword arguments |
|
96
|
|
|
|
|
97
|
|
|
Notes |
|
98
|
|
|
----- |
|
99
|
|
|
This class is highly experimental and will need additional tuning. |
|
100
|
|
|
|
|
101
|
|
|
The discount function can be passed as a callable function. It should |
|
102
|
|
|
expect an integer as its only argument and return a float, ideally |
|
103
|
|
|
less than or equal to 1.0. The argument represents the degree of |
|
104
|
|
|
discounting to apply. |
|
105
|
|
|
|
|
106
|
|
|
|
|
107
|
|
|
.. versionadded:: 0.4.1 |
|
108
|
|
|
|
|
109
|
|
|
""" |
|
110
|
1 |
|
super(DiscountedLevenshtein, self).__init__(**kwargs) |
|
111
|
1 |
|
self._mode = mode |
|
112
|
1 |
|
self._normalizer = normalizer |
|
113
|
1 |
|
self._discount_from = discount_from |
|
114
|
1 |
|
self._vowels = set(vowels.lower()) |
|
115
|
1 |
|
if callable(discount_func): |
|
116
|
1 |
|
self._cost = discount_func |
|
117
|
1 |
|
elif discount_func == 'exp': |
|
118
|
1 |
|
self._cost = self._exp_discount |
|
119
|
|
|
else: |
|
120
|
1 |
|
self._cost = self._log_discount |
|
121
|
|
|
|
|
122
|
1 |
|
@staticmethod |
|
123
|
|
|
def _log_discount(discounts): |
|
124
|
1 |
|
return 1 / (log(1 + discounts / 5) + 1) |
|
125
|
|
|
|
|
126
|
1 |
|
@staticmethod |
|
127
|
|
|
def _exp_discount(discounts): |
|
128
|
1 |
|
return 1 / (discounts + 1) ** 0.2 |
|
129
|
|
|
|
|
130
|
1 |
|
def _alignment_matrix(self, src, tar, backtrace=True): |
|
131
|
|
|
"""Return the Levenshtein alignment matrix. |
|
132
|
|
|
|
|
133
|
|
|
Parameters |
|
134
|
|
|
---------- |
|
135
|
|
|
src : str |
|
136
|
|
|
Source string for comparison |
|
137
|
|
|
tar : str |
|
138
|
|
|
Target string for comparison |
|
139
|
|
|
backtrace : bool |
|
140
|
|
|
Return the backtrace matrix as well |
|
141
|
|
|
|
|
142
|
|
|
Returns |
|
143
|
|
|
------- |
|
144
|
|
|
numpy.ndarray or tuple(numpy.ndarray, numpy.ndarray) |
|
145
|
|
|
The alignment matrix and (optionally) the backtrace matrix |
|
146
|
|
|
|
|
147
|
|
|
|
|
148
|
|
|
.. versionadded:: 0.4.1 |
|
149
|
|
|
|
|
150
|
|
|
""" |
|
151
|
1 |
|
src_len = len(src) |
|
152
|
1 |
|
tar_len = len(tar) |
|
153
|
|
|
|
|
154
|
1 |
|
if self._discount_from == 'coda': |
|
155
|
1 |
|
discount_from = [0, 0] |
|
156
|
|
|
|
|
157
|
1 |
|
src_voc = src.lower() |
|
158
|
1 |
|
for i in range(len(src_voc)): |
|
159
|
1 |
|
if src_voc[i] in self._vowels: |
|
160
|
1 |
|
discount_from[0] = i |
|
161
|
1 |
|
break |
|
162
|
1 |
|
for i in range(discount_from[0], len(src_voc)): |
|
163
|
1 |
|
if src_voc[i] not in self._vowels: |
|
164
|
1 |
|
discount_from[0] = i |
|
165
|
1 |
|
break |
|
166
|
|
|
else: |
|
167
|
1 |
|
discount_from[0] += 1 |
|
168
|
|
|
|
|
169
|
1 |
|
tar_voc = tar.lower() |
|
170
|
1 |
|
for i in range(len(tar_voc)): |
|
171
|
1 |
|
if tar_voc[i] in self._vowels: |
|
172
|
1 |
|
discount_from[1] = i |
|
173
|
1 |
|
break |
|
174
|
1 |
|
for i in range(discount_from[1], len(tar_voc)): |
|
175
|
1 |
|
if tar_voc[i] not in self._vowels: |
|
176
|
1 |
|
discount_from[1] = i |
|
177
|
1 |
|
break |
|
178
|
|
|
else: |
|
179
|
1 |
|
discount_from[1] += 1 |
|
180
|
|
|
|
|
181
|
1 |
|
elif isinstance(self._discount_from, int): |
|
182
|
1 |
|
discount_from = [self._discount_from, self._discount_from] |
|
183
|
|
|
else: |
|
184
|
1 |
|
discount_from = [1, 1] |
|
185
|
|
|
|
|
186
|
1 |
|
d_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.float) |
|
187
|
1 |
|
if backtrace: |
|
188
|
1 |
|
trace_mat = np.zeros((src_len + 1, tar_len + 1), dtype=np.int8) |
|
189
|
1 |
|
for i in range(1, src_len + 1): |
|
190
|
1 |
|
d_mat[i, 0] = d_mat[i - 1, 0] + self._cost( |
|
191
|
|
|
max(0, i - discount_from[0]) |
|
192
|
|
|
) |
|
193
|
1 |
|
if backtrace: |
|
194
|
1 |
|
trace_mat[i, 0] = 1 |
|
195
|
1 |
|
for j in range(1, tar_len + 1): |
|
196
|
1 |
|
d_mat[0, j] = d_mat[0, j - 1] + self._cost( |
|
197
|
|
|
max(0, j - discount_from[1]) |
|
198
|
|
|
) |
|
199
|
1 |
|
if backtrace: |
|
200
|
1 |
|
trace_mat[0, j] = 0 |
|
201
|
1 |
|
for i in range(src_len): |
|
202
|
1 |
|
i_extend = self._cost(max(0, i - discount_from[0])) |
|
203
|
1 |
|
for j in range(tar_len): |
|
204
|
1 |
|
traces = ((i + 1, j), (i, j + 1), (i, j)) |
|
205
|
1 |
|
cost = min(i_extend, self._cost(max(0, j - discount_from[1]))) |
|
206
|
1 |
|
opts = ( |
|
207
|
|
|
d_mat[traces[0]] + cost, # ins |
|
208
|
|
|
d_mat[traces[1]] + cost, # del |
|
209
|
|
|
d_mat[traces[2]] |
|
210
|
|
|
+ (cost if src[i] != tar[j] else 0), # sub/== |
|
211
|
|
|
) |
|
212
|
1 |
|
d_mat[i + 1, j + 1] = min(opts) |
|
213
|
1 |
|
if backtrace: |
|
214
|
1 |
|
trace_mat[i + 1, j + 1] = int(np.argmin(opts)) |
|
215
|
|
|
|
|
216
|
1 |
View Code Duplication |
if self._mode == 'osa': |
|
|
|
|
|
|
217
|
1 |
|
if ( |
|
218
|
|
|
i + 1 > 1 |
|
219
|
|
|
and j + 1 > 1 |
|
220
|
|
|
and src[i] == tar[j - 1] |
|
221
|
|
|
and src[i - 1] == tar[j] |
|
222
|
|
|
): |
|
223
|
|
|
# transposition |
|
224
|
1 |
|
d_mat[i + 1, j + 1] = min( |
|
225
|
|
|
d_mat[i + 1, j + 1], d_mat[i - 1, j - 1] + cost |
|
226
|
|
|
) |
|
227
|
1 |
|
if backtrace: |
|
228
|
1 |
|
trace_mat[i + 1, j + 1] = 2 |
|
229
|
1 |
|
if backtrace: |
|
230
|
1 |
|
return d_mat, trace_mat |
|
|
|
|
|
|
231
|
1 |
|
return d_mat |
|
232
|
|
|
|
|
233
|
1 |
|
def dist_abs(self, src, tar): |
|
234
|
|
|
"""Return the Levenshtein distance between two strings. |
|
235
|
|
|
|
|
236
|
|
|
Parameters |
|
237
|
|
|
---------- |
|
238
|
|
|
src : str |
|
239
|
|
|
Source string for comparison |
|
240
|
|
|
tar : str |
|
241
|
|
|
Target string for comparison |
|
242
|
|
|
|
|
243
|
|
|
Returns |
|
244
|
|
|
------- |
|
245
|
|
|
float (may return a float if cost has float values) |
|
246
|
|
|
The Levenshtein distance between src & tar |
|
247
|
|
|
|
|
248
|
|
|
Examples |
|
249
|
|
|
-------- |
|
250
|
|
|
>>> cmp = DiscountedLevenshtein() |
|
251
|
|
|
>>> cmp.dist_abs('cat', 'hat') |
|
252
|
|
|
1 |
|
253
|
|
|
>>> cmp.dist_abs('Niall', 'Neil') |
|
254
|
|
|
2.526064024369237 |
|
255
|
|
|
>>> cmp.dist_abs('aluminum', 'Catalan') |
|
256
|
|
|
5.053867269967515 |
|
257
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
258
|
|
|
2.594032108779918 |
|
259
|
|
|
|
|
260
|
|
|
>>> cmp = DiscountedLevenshtein(mode='osa') |
|
261
|
|
|
>>> cmp.dist_abs('ATCG', 'TAGC') |
|
262
|
|
|
1.7482385137517997 |
|
263
|
|
|
>>> cmp.dist_abs('ACTG', 'TAGC') |
|
264
|
|
|
3.342270622531718 |
|
265
|
|
|
|
|
266
|
|
|
|
|
267
|
|
|
.. versionadded:: 0.4.1 |
|
268
|
|
|
|
|
269
|
|
|
""" |
|
270
|
1 |
|
src_len = len(src) |
|
271
|
1 |
|
tar_len = len(tar) |
|
272
|
|
|
|
|
273
|
1 |
|
if src == tar: |
|
274
|
1 |
|
return 0.0 |
|
275
|
|
|
|
|
276
|
1 |
|
if isinstance(self._discount_from, int): |
|
277
|
1 |
|
discount_from = self._discount_from |
|
278
|
|
|
else: |
|
279
|
1 |
|
discount_from = 1 |
|
280
|
|
|
|
|
281
|
1 |
|
if not src: |
|
282
|
1 |
|
return sum( |
|
283
|
|
|
self._cost(max(0, pos - discount_from)) |
|
284
|
|
|
for pos in range(tar_len) |
|
285
|
|
|
) |
|
286
|
1 |
|
if not tar: |
|
287
|
1 |
|
return sum( |
|
288
|
|
|
self._cost(max(0, pos - discount_from)) |
|
289
|
|
|
for pos in range(src_len) |
|
290
|
|
|
) |
|
291
|
|
|
|
|
292
|
1 |
|
d_mat = self._alignment_matrix(src, tar, backtrace=False) |
|
293
|
|
|
|
|
294
|
1 |
|
if int(d_mat[src_len, tar_len]) == d_mat[src_len, tar_len]: |
|
295
|
1 |
|
return int(d_mat[src_len, tar_len]) |
|
296
|
|
|
else: |
|
297
|
1 |
|
return d_mat[src_len, tar_len] |
|
298
|
|
|
|
|
299
|
1 |
|
def dist(self, src, tar): |
|
300
|
|
|
"""Return the normalized Levenshtein distance between two strings. |
|
301
|
|
|
|
|
302
|
|
|
The Levenshtein distance is normalized by dividing the Levenshtein |
|
303
|
|
|
distance (calculated by any of the three supported methods) by the |
|
304
|
|
|
greater of the number of characters in src times the cost of a delete |
|
305
|
|
|
and the number of characters in tar times the cost of an insert. |
|
306
|
|
|
For the case in which all operations have :math:`cost = 1`, this is |
|
307
|
|
|
equivalent to the greater of the length of the two strings src & tar. |
|
308
|
|
|
|
|
309
|
|
|
Parameters |
|
310
|
|
|
---------- |
|
311
|
|
|
src : str |
|
312
|
|
|
Source string for comparison |
|
313
|
|
|
tar : str |
|
314
|
|
|
Target string for comparison |
|
315
|
|
|
|
|
316
|
|
|
Returns |
|
317
|
|
|
------- |
|
318
|
|
|
float |
|
319
|
|
|
The normalized Levenshtein distance between src & tar |
|
320
|
|
|
|
|
321
|
|
|
Examples |
|
322
|
|
|
-------- |
|
323
|
|
|
>>> cmp = DiscountedLevenshtein() |
|
324
|
|
|
>>> cmp.dist('cat', 'hat') |
|
325
|
|
|
0.3513958291799864 |
|
326
|
|
|
>>> cmp.dist('Niall', 'Neil') |
|
327
|
|
|
0.5909885886270658 |
|
328
|
|
|
>>> cmp.dist('aluminum', 'Catalan') |
|
329
|
|
|
0.8348163322045603 |
|
330
|
|
|
>>> cmp.dist('ATCG', 'TAGC') |
|
331
|
|
|
0.7217609721523955 |
|
332
|
|
|
|
|
333
|
|
|
|
|
334
|
|
|
.. versionadded:: 0.4.1 |
|
335
|
|
|
|
|
336
|
|
|
""" |
|
337
|
1 |
|
if src == tar: |
|
338
|
1 |
|
return 0 |
|
339
|
|
|
|
|
340
|
1 |
|
if isinstance(self._discount_from, int): |
|
341
|
1 |
|
discount_from = self._discount_from |
|
342
|
|
|
else: |
|
343
|
1 |
|
discount_from = 1 |
|
344
|
|
|
|
|
345
|
1 |
|
src_len = len(src) |
|
346
|
1 |
|
tar_len = len(tar) |
|
347
|
|
|
|
|
348
|
1 |
|
normalize_term = self._normalizer( |
|
349
|
|
|
[ |
|
350
|
|
|
sum( |
|
351
|
|
|
self._cost(max(0, pos - discount_from)) |
|
352
|
|
|
for pos in range(src_len) |
|
353
|
|
|
), |
|
354
|
|
|
sum( |
|
355
|
|
|
self._cost(max(0, pos - discount_from)) |
|
356
|
|
|
for pos in range(tar_len) |
|
357
|
|
|
), |
|
358
|
|
|
] |
|
359
|
|
|
) |
|
360
|
|
|
|
|
361
|
1 |
|
return self.dist_abs(src, tar) / normalize_term |
|
362
|
|
|
|
|
363
|
|
|
|
|
364
|
|
|
if __name__ == '__main__': |
|
365
|
|
|
import doctest |
|
366
|
|
|
|
|
367
|
|
|
doctest.testmod() |
|
368
|
|
|
|