1
|
|
|
# Copyright 2018-2020 by Christopher C. Little. |
2
|
|
|
# This file is part of Abydos. |
3
|
|
|
# |
4
|
|
|
# Abydos is free software: you can redistribute it and/or modify |
5
|
|
|
# it under the terms of the GNU General Public License as published by |
6
|
|
|
# the Free Software Foundation, either version 3 of the License, or |
7
|
|
|
# (at your option) any later version. |
8
|
|
|
# |
9
|
|
|
# Abydos is distributed in the hope that it will be useful, |
10
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
11
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
12
|
|
|
# GNU General Public License for more details. |
13
|
|
|
# |
14
|
|
|
# You should have received a copy of the GNU General Public License |
15
|
|
|
# along with Abydos. If not, see <http://www.gnu.org/licenses/>. |
16
|
|
|
|
17
|
|
|
"""abydos.distance._koppen_i. |
18
|
|
|
|
19
|
1 |
|
Köppen I correlation |
20
|
|
|
""" |
21
|
|
|
|
22
|
|
|
from typing import Any, Counter as TCounter, Optional, Sequence, Set, Union |
23
|
|
|
|
24
|
1 |
|
from ._token_distance import _TokenDistance |
25
|
|
|
from ..tokenizer import _Tokenizer |
26
|
|
|
|
27
|
|
|
__all__ = ['KoppenI'] |
28
|
|
|
|
29
|
|
|
|
30
|
|
View Code Duplication |
class KoppenI(_TokenDistance): |
|
|
|
|
31
|
1 |
|
r"""Köppen I correlation. |
32
|
|
|
|
33
|
1 |
|
For two sets X and Y and an alphabet N, provided that :math:`|X| = |Y|`, |
34
|
|
|
Köppen I correlation :cite:`Koppen:1870,Goodman:1959` is |
35
|
|
|
|
36
|
1 |
|
.. math:: |
37
|
|
|
|
38
|
|
|
corr_{KoppenI}(X, Y) = |
39
|
|
|
\frac{|X| \cdot |N \setminus X| - |X \setminus Y|} |
40
|
|
|
{|X| \cdot |N \setminus X|} |
41
|
|
|
|
42
|
|
|
To support cases where :math:`|X| \neq |Y|`, this class implements a slight |
43
|
|
|
variation, while still providing the expected results when |
44
|
|
|
:math:`|X| = |Y|`: |
45
|
|
|
|
46
|
|
|
.. math:: |
47
|
|
|
|
48
|
|
|
corr_{KoppenI}(X, Y) = |
49
|
|
|
\frac{\frac{|X|+|Y|}{2} \cdot |
50
|
|
|
\frac{|N \setminus X|+|N \setminus Y|}{2}- |
51
|
|
|
\frac{|X \triangle Y|}{2}} |
52
|
|
|
{\frac{|X|+|Y|}{2} \cdot |
53
|
|
|
\frac{|N \setminus X|+|N \setminus Y|}{2}} |
54
|
|
|
|
55
|
|
|
In :ref:`2x2 confusion table terms <confusion_table>`, where a+b+c+d=n, |
56
|
|
|
this is |
57
|
|
|
|
58
|
|
|
.. math:: |
59
|
|
|
|
60
|
|
|
sim_{KoppenI} = |
61
|
|
|
\frac{\frac{2a+b+c}{2} \cdot \frac{2d+b+c}{2}- |
62
|
|
|
\frac{b+c}{2}} |
63
|
|
|
{\frac{2a+b+c}{2} \cdot \frac{2d+b+c}{2}} |
64
|
|
|
|
65
|
|
|
Notes |
66
|
|
|
----- |
67
|
|
|
In the usual case all of the above values should be proportional to the |
68
|
|
|
total number of samples n. I.e., a, b, c, d, & n should all be divided by |
69
|
|
|
n prior to calculating the coefficient. This class's default normalizer |
70
|
|
|
is, accordingly, 'proportional'. |
71
|
|
|
|
72
|
|
|
.. versionadded:: 0.4.0 |
73
|
|
|
|
74
|
|
|
""" |
75
|
|
|
|
76
|
|
|
def __init__( |
77
|
|
|
self, |
78
|
|
|
alphabet: Optional[ |
79
|
|
|
Union[TCounter[str], Sequence[str], Set[str], int] |
80
|
|
|
] = None, |
81
|
|
|
tokenizer: Optional[_Tokenizer] = None, |
82
|
1 |
|
intersection_type: str = 'crisp', |
83
|
|
|
normalizer: str = 'proportional', |
84
|
|
|
**kwargs: Any |
85
|
|
|
) -> None: |
86
|
|
|
"""Initialize KoppenI instance. |
87
|
|
|
|
88
|
|
|
Parameters |
89
|
|
|
---------- |
90
|
|
|
alphabet : Counter, collection, int, or None |
91
|
|
|
This represents the alphabet of possible tokens. |
92
|
|
|
See :ref:`alphabet <alphabet>` description in |
93
|
|
|
:py:class:`_TokenDistance` for details. |
94
|
|
|
tokenizer : _Tokenizer |
95
|
|
|
A tokenizer instance from the :py:mod:`abydos.tokenizer` package |
96
|
|
|
intersection_type : str |
97
|
|
|
Specifies the intersection type, and set type as a result: |
98
|
|
|
See :ref:`intersection_type <intersection_type>` description in |
99
|
|
|
:py:class:`_TokenDistance` for details. |
100
|
|
|
normalizer : str |
101
|
|
|
Specifies the normalization type. See :ref:`normalizer <alphabet>` |
102
|
|
|
description in :py:class:`_TokenDistance` for details. |
103
|
|
|
**kwargs |
104
|
|
|
Arbitrary keyword arguments |
105
|
|
|
|
106
|
|
|
Other Parameters |
107
|
|
|
---------------- |
108
|
|
|
qval : int |
109
|
|
|
The length of each q-gram. Using this parameter and tokenizer=None |
110
|
|
|
will cause the instance to use the QGram tokenizer with this |
111
|
|
|
q value. |
112
|
|
|
metric : _Distance |
113
|
|
|
A string distance measure class for use in the ``soft`` and |
114
|
|
|
``fuzzy`` variants. |
115
|
|
|
threshold : float |
116
|
|
|
A threshold value, similarities above which are counted as |
117
|
|
|
members of the intersection for the ``fuzzy`` variant. |
118
|
|
|
|
119
|
|
|
|
120
|
|
|
.. versionadded:: 0.4.0 |
121
|
|
|
|
122
|
|
|
""" |
123
|
|
|
super(KoppenI, self).__init__( |
124
|
|
|
alphabet=alphabet, |
125
|
|
|
tokenizer=tokenizer, |
126
|
|
|
intersection_type=intersection_type, |
127
|
1 |
|
normalizer=normalizer, |
128
|
|
|
**kwargs |
129
|
|
|
) |
130
|
|
|
|
131
|
|
|
def corr(self, src: str, tar: str) -> float: |
132
|
|
|
"""Return the Köppen I correlation of two strings. |
133
|
|
|
|
134
|
|
|
Parameters |
135
|
1 |
|
---------- |
136
|
|
|
src : str |
137
|
|
|
Source string (or QGrams/Counter objects) for comparison |
138
|
|
|
tar : str |
139
|
|
|
Target string (or QGrams/Counter objects) for comparison |
140
|
|
|
|
141
|
|
|
Returns |
142
|
|
|
------- |
143
|
|
|
float |
144
|
|
|
Köppen I correlation |
145
|
|
|
|
146
|
|
|
Examples |
147
|
|
|
-------- |
148
|
|
|
>>> cmp = KoppenI() |
149
|
|
|
>>> cmp.corr('cat', 'hat') |
150
|
|
|
0.49615384615384617 |
151
|
|
|
>>> cmp.corr('Niall', 'Neil') |
152
|
|
|
0.3575056927658083 |
153
|
|
|
>>> cmp.corr('aluminum', 'Catalan') |
154
|
|
|
0.1068520131813188 |
155
|
|
|
>>> cmp.corr('ATCG', 'TAGC') |
156
|
|
|
-0.006418485237483896 |
157
|
|
|
|
158
|
|
|
|
159
|
|
|
.. versionadded:: 0.4.0 |
160
|
|
|
|
161
|
|
|
""" |
162
|
|
|
if src == tar: |
163
|
|
|
return 1.0 |
164
|
|
|
self._tokenize(src, tar) |
165
|
|
|
|
166
|
1 |
|
a = self._intersection_card() |
167
|
1 |
|
b = self._src_only_card() |
168
|
1 |
|
c = self._tar_only_card() |
169
|
|
|
d = self._total_complement_card() |
170
|
1 |
|
|
171
|
1 |
|
abac_dbdc_mean_prod = (2 * a + b + c) * (2 * d + b + c) / 4 |
172
|
1 |
|
|
173
|
1 |
|
num = abac_dbdc_mean_prod - (b + c) / 2 |
174
|
|
|
if num: |
175
|
1 |
|
return num / abac_dbdc_mean_prod |
176
|
|
|
return 0.0 |
177
|
1 |
|
|
178
|
1 |
|
def sim(self, src: str, tar: str) -> float: |
179
|
1 |
|
"""Return the Köppen I similarity of two strings. |
180
|
|
|
|
181
|
|
|
Parameters |
182
|
1 |
|
---------- |
183
|
|
|
src : str |
184
|
|
|
Source string (or QGrams/Counter objects) for comparison |
185
|
|
|
tar : str |
186
|
|
|
Target string (or QGrams/Counter objects) for comparison |
187
|
|
|
|
188
|
|
|
Returns |
189
|
|
|
------- |
190
|
|
|
float |
191
|
|
|
Köppen I similarity |
192
|
|
|
|
193
|
|
|
Examples |
194
|
|
|
-------- |
195
|
|
|
>>> cmp = KoppenI() |
196
|
|
|
>>> cmp.sim('cat', 'hat') |
197
|
|
|
0.7480769230769231 |
198
|
|
|
>>> cmp.sim('Niall', 'Neil') |
199
|
|
|
0.6787528463829041 |
200
|
|
|
>>> cmp.sim('aluminum', 'Catalan') |
201
|
|
|
0.5534260065906594 |
202
|
|
|
>>> cmp.sim('ATCG', 'TAGC') |
203
|
|
|
0.49679075738125805 |
204
|
|
|
|
205
|
|
|
|
206
|
|
|
.. versionadded:: 0.4.0 |
207
|
|
|
|
208
|
|
|
""" |
209
|
|
|
return (1.0 + self.corr(src, tar)) / 2.0 |
210
|
|
|
|
211
|
|
|
|
212
|
|
|
if __name__ == '__main__': |
213
|
1 |
|
import doctest |
214
|
|
|
|
215
|
|
|
doctest.testmod() |
216
|
|
|
|