Code Duplication    Length = 149-180 lines in 3 locations

abydos/distance/_koppen_i.py 1 location

@@ 30-209 (lines=180) @@
27
__all__ = ['KoppenI']
28
29
30
class KoppenI(_TokenDistance):
31
    r"""Köppen I correlation.
32
33
    For two sets X and Y and an alphabet N, provided that :math:`|X| = |Y|`,
34
    Köppen I correlation :cite:`Koppen:1870,Goodman:1959` is
35
36
        .. math::
37
38
            corr_{KoppenI}(X, Y) =
39
            \frac{|X| \cdot |N \setminus X| - |X \setminus Y|}
40
            {|X| \cdot |N \setminus X|}
41
42
    To support cases where :math:`|X| \neq |Y|`, this class implements a slight
43
    variation, while still providing the expected results when
44
    :math:`|X| = |Y|`:
45
46
        .. math::
47
48
            corr_{KoppenI}(X, Y) =
49
            \frac{\frac{|X|+|Y|}{2} \cdot
50
            \frac{|N \setminus X|+|N \setminus Y|}{2}-
51
            \frac{|X \triangle Y|}{2}}
52
            {\frac{|X|+|Y|}{2} \cdot
53
            \frac{|N \setminus X|+|N \setminus Y|}{2}}
54
55
    In :ref:`2x2 confusion table terms <confusion_table>`, where a+b+c+d=n,
56
    this is
57
58
        .. math::
59
60
            sim_{KoppenI} =
61
            \frac{\frac{2a+b+c}{2} \cdot \frac{2d+b+c}{2}-
62
            \frac{b+c}{2}}
63
            {\frac{2a+b+c}{2} \cdot \frac{2d+b+c}{2}}
64
65
    Notes
66
    -----
67
    In the usual case all of the above values should be proportional to the
68
    total number of samples n. I.e., a, b, c, d, & n should all be divided by
69
    n prior to calculating the coefficient. This class's default normalizer
70
    is, accordingly, 'proportional'.
71
72
    .. versionadded:: 0.4.0
73
74
    """
75
76
    def __init__(
77
        self,
78
        alphabet: Optional[
79
            Union[TCounter[str], Sequence[str], Set[str], int]
80
        ] = None,
81
        tokenizer: Optional[_Tokenizer] = None,
82
        intersection_type: str = 'crisp',
83
        normalizer: str = 'proportional',
84
        **kwargs: Any
85
    ) -> None:
86
        """Initialize KoppenI instance.
87
88
        Parameters
89
        ----------
90
        alphabet : Counter, collection, int, or None
91
            This represents the alphabet of possible tokens.
92
            See :ref:`alphabet <alphabet>` description in
93
            :py:class:`_TokenDistance` for details.
94
        tokenizer : _Tokenizer
95
            A tokenizer instance from the :py:mod:`abydos.tokenizer` package
96
        intersection_type : str
97
            Specifies the intersection type, and set type as a result:
98
            See :ref:`intersection_type <intersection_type>` description in
99
            :py:class:`_TokenDistance` for details.
100
        normalizer : str
101
            Specifies the normalization type. See :ref:`normalizer <alphabet>`
102
            description in :py:class:`_TokenDistance` for details.
103
        **kwargs
104
            Arbitrary keyword arguments
105
106
        Other Parameters
107
        ----------------
108
        qval : int
109
            The length of each q-gram. Using this parameter and tokenizer=None
110
            will cause the instance to use the QGram tokenizer with this
111
            q value.
112
        metric : _Distance
113
            A string distance measure class for use in the ``soft`` and
114
            ``fuzzy`` variants.
115
        threshold : float
116
            A threshold value, similarities above which are counted as
117
            members of the intersection for the ``fuzzy`` variant.
118
119
120
        .. versionadded:: 0.4.0
121
122
        """
123
        super(KoppenI, self).__init__(
124
            alphabet=alphabet,
125
            tokenizer=tokenizer,
126
            intersection_type=intersection_type,
127
            normalizer=normalizer,
128
            **kwargs
129
        )
130
131
    def corr(self, src: str, tar: str) -> float:
132
        """Return the Köppen I correlation of two strings.
133
134
        Parameters
135
        ----------
136
        src : str
137
            Source string (or QGrams/Counter objects) for comparison
138
        tar : str
139
            Target string (or QGrams/Counter objects) for comparison
140
141
        Returns
142
        -------
143
        float
144
            Köppen I correlation
145
146
        Examples
147
        --------
148
        >>> cmp = KoppenI()
149
        >>> cmp.corr('cat', 'hat')
150
        0.49615384615384617
151
        >>> cmp.corr('Niall', 'Neil')
152
        0.3575056927658083
153
        >>> cmp.corr('aluminum', 'Catalan')
154
        0.1068520131813188
155
        >>> cmp.corr('ATCG', 'TAGC')
156
        -0.006418485237483896
157
158
159
        .. versionadded:: 0.4.0
160
161
        """
162
        if src == tar:
163
            return 1.0
164
        self._tokenize(src, tar)
165
166
        a = self._intersection_card()
167
        b = self._src_only_card()
168
        c = self._tar_only_card()
169
        d = self._total_complement_card()
170
171
        abac_dbdc_mean_prod = (2 * a + b + c) * (2 * d + b + c) / 4
172
173
        num = abac_dbdc_mean_prod - (b + c) / 2
174
        if num:
175
            return num / abac_dbdc_mean_prod
176
        return 0.0
177
178
    def sim(self, src: str, tar: str) -> float:
179
        """Return the Köppen I similarity of two strings.
180
181
        Parameters
182
        ----------
183
        src : str
184
            Source string (or QGrams/Counter objects) for comparison
185
        tar : str
186
            Target string (or QGrams/Counter objects) for comparison
187
188
        Returns
189
        -------
190
        float
191
            Köppen I similarity
192
193
        Examples
194
        --------
195
        >>> cmp = KoppenI()
196
        >>> cmp.sim('cat', 'hat')
197
        0.7480769230769231
198
        >>> cmp.sim('Niall', 'Neil')
199
        0.6787528463829041
200
        >>> cmp.sim('aluminum', 'Catalan')
201
        0.5534260065906594
202
        >>> cmp.sim('ATCG', 'TAGC')
203
        0.49679075738125805
204
205
206
        .. versionadded:: 0.4.0
207
208
        """
209
        return (1.0 + self.corr(src, tar)) / 2.0
210
211
212
if __name__ == '__main__':

abydos/distance/_gilbert.py 1 location

@@ 30-185 (lines=156) @@
27
__all__ = ['Gilbert']
28
29
30
class Gilbert(_TokenDistance):
31
    r"""Gilbert correlation.
32
33
    For two sets X and Y and a population N, the Gilbert correlation
34
    :cite:`Gilbert:1884` is
35
36
        .. math::
37
38
            corr_{Gilbert}(X, Y) =
39
            \frac{2(|X \cap Y| \cdot |(N \setminus X) \setminus Y| -
40
            |X \setminus Y| \cdot |Y \setminus X|)}
41
            {|N|^2 - |X \cap Y|^2 + |X \setminus Y|^2 + |Y \setminus X|^2 -
42
            |(N \setminus X) \setminus Y|^2}
43
44
    For lack of access to the original, this formula is based on the concurring
45
    formulae presented in :cite:`Peirce:1884` and :cite:`Doolittle:1884`.
46
47
    In :ref:`2x2 confusion table terms <confusion_table>`, where a+b+c+d=n,
48
    this is
49
50
        .. math::
51
52
            corr_{Gilbert} =
53
            \frac{2(ad-cd)}{n^2-a^2+b^2+c^2-d^2}
54
55
    .. versionadded:: 0.4.0
56
    """
57
58
    def __init__(
59
        self,
60
        alphabet: Optional[
61
            Union[TCounter[str], Sequence[str], Set[str], int]
62
        ] = None,
63
        tokenizer: Optional[_Tokenizer] = None,
64
        intersection_type: str = 'crisp',
65
        **kwargs: Any
66
    ) -> None:
67
        """Initialize Gilbert instance.
68
69
        Parameters
70
        ----------
71
        alphabet : Counter, collection, int, or None
72
            This represents the alphabet of possible tokens.
73
            See :ref:`alphabet <alphabet>` description in
74
            :py:class:`_TokenDistance` for details.
75
        tokenizer : _Tokenizer
76
            A tokenizer instance from the :py:mod:`abydos.tokenizer` package
77
        intersection_type : str
78
            Specifies the intersection type, and set type as a result:
79
            See :ref:`intersection_type <intersection_type>` description in
80
            :py:class:`_TokenDistance` for details.
81
        **kwargs
82
            Arbitrary keyword arguments
83
84
        Other Parameters
85
        ----------------
86
        qval : int
87
            The length of each q-gram. Using this parameter and tokenizer=None
88
            will cause the instance to use the QGram tokenizer with this
89
            q value.
90
        metric : _Distance
91
            A string distance measure class for use in the ``soft`` and
92
            ``fuzzy`` variants.
93
        threshold : float
94
            A threshold value, similarities above which are counted as
95
            members of the intersection for the ``fuzzy`` variant.
96
97
98
        .. versionadded:: 0.4.0
99
100
        """
101
        super(Gilbert, self).__init__(
102
            alphabet=alphabet,
103
            tokenizer=tokenizer,
104
            intersection_type=intersection_type,
105
            **kwargs
106
        )
107
108
    def corr(self, src: str, tar: str) -> float:
109
        """Return the Gilbert correlation of two strings.
110
111
        Parameters
112
        ----------
113
        src : str
114
            Source string (or QGrams/Counter objects) for comparison
115
        tar : str
116
            Target string (or QGrams/Counter objects) for comparison
117
118
        Returns
119
        -------
120
        float
121
            Gilbert correlation
122
123
        Examples
124
        --------
125
        >>> cmp = Gilbert()
126
        >>> cmp.corr('cat', 'hat')
127
        0.3310580204778157
128
        >>> cmp.corr('Niall', 'Neil')
129
        0.21890122402504983
130
        >>> cmp.corr('aluminum', 'Catalan')
131
        0.057094811018577836
132
        >>> cmp.corr('ATCG', 'TAGC')
133
        -0.003198976327575176
134
135
136
        .. versionadded:: 0.4.0
137
138
        """
139
        if src == tar:
140
            return 1.0
141
142
        self._tokenize(src, tar)
143
144
        a = self._intersection_card()
145
        b = self._src_only_card()
146
        c = self._tar_only_card()
147
        n = self._population_unique_card()
148
149
        num = a * n - (a + b) * (a + c)
150
        if num:
151
            return num / (n * (a + b + c) - (a + b) * (a + c))
152
        return 0.0
153
154
    def sim(self, src: str, tar: str) -> float:
155
        """Return the Gilbert similarity of two strings.
156
157
        Parameters
158
        ----------
159
        src : str
160
            Source string (or QGrams/Counter objects) for comparison
161
        tar : str
162
            Target string (or QGrams/Counter objects) for comparison
163
164
        Returns
165
        -------
166
        float
167
            Gilbert similarity
168
169
        Examples
170
        --------
171
        >>> cmp = Gilbert()
172
        >>> cmp.sim('cat', 'hat')
173
        0.6655290102389079
174
        >>> cmp.sim('Niall', 'Neil')
175
        0.6094506120125249
176
        >>> cmp.sim('aluminum', 'Catalan')
177
        0.5285474055092889
178
        >>> cmp.sim('ATCG', 'TAGC')
179
        0.4984005118362124
180
181
182
        .. versionadded:: 0.4.0
183
184
        """
185
        return (1.0 + self.corr(src, tar)) / 2.0
186
187
188
if __name__ == '__main__':

abydos/distance/_maxwell_pilliner.py 1 location

@@ 30-178 (lines=149) @@
27
__all__ = ['MaxwellPilliner']
28
29
30
class MaxwellPilliner(_TokenDistance):
31
    r"""Maxwell & Pilliner correlation.
32
33
    For two sets X and Y and a population N, Maxwell & Pilliner correlation
34
    :cite:`Maxwell:1968` is
35
36
        .. math::
37
38
            corr_{MaxwellPilliner}(X, Y) =
39
            \frac{2(|X \cap Y| \cdot |(N \setminus X) \setminus Y| -
40
            |X \setminus Y| \cdot |Y \setminus X|)}
41
            {|X| \cdot |N \setminus X| + |Y| \cdot |N \setminus Y|}
42
43
    In :ref:`2x2 confusion table terms <confusion_table>`, where a+b+c+d=n,
44
    this is
45
46
        .. math::
47
48
            corr_{MaxwellPilliner} =
49
            \frac{2(ad-bc)}{(a+b)(c+d)+(a+c)(b+c)}
50
51
    .. versionadded:: 0.4.0
52
    """
53
54
    def __init__(
55
        self,
56
        alphabet: Optional[
57
            Union[TCounter[str], Sequence[str], Set[str], int]
58
        ] = None,
59
        tokenizer: Optional[_Tokenizer] = None,
60
        intersection_type: str = 'crisp',
61
        **kwargs: Any
62
    ) -> None:
63
        """Initialize MaxwellPilliner instance.
64
65
        Parameters
66
        ----------
67
        alphabet : Counter, collection, int, or None
68
            This represents the alphabet of possible tokens.
69
            See :ref:`alphabet <alphabet>` description in
70
            :py:class:`_TokenDistance` for details.
71
        tokenizer : _Tokenizer
72
            A tokenizer instance from the :py:mod:`abydos.tokenizer` package
73
        intersection_type : str
74
            Specifies the intersection type, and set type as a result:
75
            See :ref:`intersection_type <intersection_type>` description in
76
            :py:class:`_TokenDistance` for details.
77
        **kwargs
78
            Arbitrary keyword arguments
79
80
        Other Parameters
81
        ----------------
82
        qval : int
83
            The length of each q-gram. Using this parameter and tokenizer=None
84
            will cause the instance to use the QGram tokenizer with this
85
            q value.
86
        metric : _Distance
87
            A string distance measure class for use in the ``soft`` and
88
            ``fuzzy`` variants.
89
        threshold : float
90
            A threshold value, similarities above which are counted as
91
            members of the intersection for the ``fuzzy`` variant.
92
93
94
        .. versionadded:: 0.4.0
95
96
        """
97
        super(MaxwellPilliner, self).__init__(
98
            alphabet=alphabet,
99
            tokenizer=tokenizer,
100
            intersection_type=intersection_type,
101
            **kwargs
102
        )
103
104
    def corr(self, src: str, tar: str) -> float:
105
        """Return the Maxwell & Pilliner correlation of two strings.
106
107
        Parameters
108
        ----------
109
        src : str
110
            Source string (or QGrams/Counter objects) for comparison
111
        tar : str
112
            Target string (or QGrams/Counter objects) for comparison
113
114
        Returns
115
        -------
116
        float
117
            Maxwell & Pilliner correlation
118
119
        Examples
120
        --------
121
        >>> cmp = MaxwellPilliner()
122
        >>> cmp.corr('cat', 'hat')
123
        0.49743589743589745
124
        >>> cmp.corr('Niall', 'Neil')
125
        0.35921989956790845
126
        >>> cmp.corr('aluminum', 'Catalan')
127
        0.10803030303030303
128
        >>> cmp.corr('ATCG', 'TAGC')
129
        -0.006418485237483954
130
131
132
        .. versionadded:: 0.4.0
133
134
        """
135
        self._tokenize(src, tar)
136
137
        a = self._intersection_card()
138
        b = self._src_only_card()
139
        c = self._tar_only_card()
140
        d = self._total_complement_card()
141
142
        num = a * d - b * c
143
        if num:
144
            return 2 * num / ((a + b) * (c + d) + (a + c) * (b + d))
145
        return 0.0
146
147
    def sim(self, src: str, tar: str) -> float:
148
        """Return the Maxwell & Pilliner similarity of two strings.
149
150
        Parameters
151
        ----------
152
        src : str
153
            Source string (or QGrams/Counter objects) for comparison
154
        tar : str
155
            Target string (or QGrams/Counter objects) for comparison
156
157
        Returns
158
        -------
159
        float
160
            Maxwell & Pilliner similarity
161
162
        Examples
163
        --------
164
        >>> cmp = MaxwellPilliner()
165
        >>> cmp.sim('cat', 'hat')
166
        0.7487179487179487
167
        >>> cmp.sim('Niall', 'Neil')
168
        0.6796099497839543
169
        >>> cmp.sim('aluminum', 'Catalan')
170
        0.5540151515151515
171
        >>> cmp.sim('ATCG', 'TAGC')
172
        0.496790757381258
173
174
175
        .. versionadded:: 0.4.0
176
177
        """
178
        return (1.0 + self.corr(src, tar)) / 2.0
179
180
181
if __name__ == '__main__':