abydos.distance._gilbert.Gilbert.sim()   A
last analyzed

Complexity

Conditions 1

Size

Total Lines 32
Code Lines 2

Duplication

Lines 32
Ratio 100 %

Code Coverage

Tests 4
CRAP Score 1

Importance

Changes 0
Metric Value
eloc 2
dl 32
loc 32
ccs 4
cts 4
cp 1
rs 10
c 0
b 0
f 0
cc 1
nop 3
crap 1
1
# Copyright 2018-2020 by Christopher C. Little.
2
# This file is part of Abydos.
3
#
4
# Abydos is free software: you can redistribute it and/or modify
5
# it under the terms of the GNU General Public License as published by
6
# the Free Software Foundation, either version 3 of the License, or
7
# (at your option) any later version.
8
#
9
# Abydos is distributed in the hope that it will be useful,
10
# but WITHOUT ANY WARRANTY; without even the implied warranty of
11
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12
# GNU General Public License for more details.
13
#
14
# You should have received a copy of the GNU General Public License
15
# along with Abydos. If not, see <http://www.gnu.org/licenses/>.
16
17
"""abydos.distance._gilbert.
18
19 1
Gilbert correlation
20
"""
21
22
from typing import Any, Counter as TCounter, Optional, Sequence, Set, Union
23
24 1
from ._token_distance import _TokenDistance
25
from ..tokenizer import _Tokenizer
26
27
__all__ = ['Gilbert']
28
29
30 View Code Duplication
class Gilbert(_TokenDistance):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
31 1
    r"""Gilbert correlation.
32
33 1
    For two sets X and Y and a population N, the Gilbert correlation
34
    :cite:`Gilbert:1884` is
35
36 1
        .. math::
37
38
            corr_{Gilbert}(X, Y) =
39
            \frac{2(|X \cap Y| \cdot |(N \setminus X) \setminus Y| -
40
            |X \setminus Y| \cdot |Y \setminus X|)}
41
            {|N|^2 - |X \cap Y|^2 + |X \setminus Y|^2 + |Y \setminus X|^2 -
42
            |(N \setminus X) \setminus Y|^2}
43
44
    For lack of access to the original, this formula is based on the concurring
45
    formulae presented in :cite:`Peirce:1884` and :cite:`Doolittle:1884`.
46
47
    In :ref:`2x2 confusion table terms <confusion_table>`, where a+b+c+d=n,
48
    this is
49
50
        .. math::
51
52
            corr_{Gilbert} =
53
            \frac{2(ad-cd)}{n^2-a^2+b^2+c^2-d^2}
54
55
    .. versionadded:: 0.4.0
56
    """
57
58
    def __init__(
59
        self,
60
        alphabet: Optional[
61
            Union[TCounter[str], Sequence[str], Set[str], int]
62
        ] = None,
63
        tokenizer: Optional[_Tokenizer] = None,
64 1
        intersection_type: str = 'crisp',
65
        **kwargs: Any
66
    ) -> None:
67
        """Initialize Gilbert instance.
68
69
        Parameters
70
        ----------
71
        alphabet : Counter, collection, int, or None
72
            This represents the alphabet of possible tokens.
73
            See :ref:`alphabet <alphabet>` description in
74
            :py:class:`_TokenDistance` for details.
75
        tokenizer : _Tokenizer
76
            A tokenizer instance from the :py:mod:`abydos.tokenizer` package
77
        intersection_type : str
78
            Specifies the intersection type, and set type as a result:
79
            See :ref:`intersection_type <intersection_type>` description in
80
            :py:class:`_TokenDistance` for details.
81
        **kwargs
82
            Arbitrary keyword arguments
83
84
        Other Parameters
85
        ----------------
86
        qval : int
87
            The length of each q-gram. Using this parameter and tokenizer=None
88
            will cause the instance to use the QGram tokenizer with this
89
            q value.
90
        metric : _Distance
91
            A string distance measure class for use in the ``soft`` and
92
            ``fuzzy`` variants.
93
        threshold : float
94
            A threshold value, similarities above which are counted as
95
            members of the intersection for the ``fuzzy`` variant.
96
97
98
        .. versionadded:: 0.4.0
99
100
        """
101
        super(Gilbert, self).__init__(
102
            alphabet=alphabet,
103
            tokenizer=tokenizer,
104
            intersection_type=intersection_type,
105 1
            **kwargs
106
        )
107
108
    def corr(self, src: str, tar: str) -> float:
109
        """Return the Gilbert correlation of two strings.
110
111
        Parameters
112 1
        ----------
113
        src : str
114
            Source string (or QGrams/Counter objects) for comparison
115
        tar : str
116
            Target string (or QGrams/Counter objects) for comparison
117
118
        Returns
119
        -------
120
        float
121
            Gilbert correlation
122
123
        Examples
124
        --------
125
        >>> cmp = Gilbert()
126
        >>> cmp.corr('cat', 'hat')
127
        0.3310580204778157
128
        >>> cmp.corr('Niall', 'Neil')
129
        0.21890122402504983
130
        >>> cmp.corr('aluminum', 'Catalan')
131
        0.057094811018577836
132
        >>> cmp.corr('ATCG', 'TAGC')
133
        -0.003198976327575176
134
135
136
        .. versionadded:: 0.4.0
137
138
        """
139
        if src == tar:
140
            return 1.0
141
142
        self._tokenize(src, tar)
143 1
144 1
        a = self._intersection_card()
145
        b = self._src_only_card()
146 1
        c = self._tar_only_card()
147
        n = self._population_unique_card()
148 1
149 1
        num = a * n - (a + b) * (a + c)
150 1
        if num:
151 1
            return num / (n * (a + b + c) - (a + b) * (a + c))
152
        return 0.0
153 1
154 1
    def sim(self, src: str, tar: str) -> float:
155 1
        """Return the Gilbert similarity of two strings.
156 1
157
        Parameters
158 1
        ----------
159
        src : str
160
            Source string (or QGrams/Counter objects) for comparison
161
        tar : str
162
            Target string (or QGrams/Counter objects) for comparison
163
164
        Returns
165
        -------
166
        float
167
            Gilbert similarity
168
169
        Examples
170
        --------
171
        >>> cmp = Gilbert()
172
        >>> cmp.sim('cat', 'hat')
173
        0.6655290102389079
174
        >>> cmp.sim('Niall', 'Neil')
175
        0.6094506120125249
176
        >>> cmp.sim('aluminum', 'Catalan')
177
        0.5285474055092889
178
        >>> cmp.sim('ATCG', 'TAGC')
179
        0.4984005118362124
180
181
182
        .. versionadded:: 0.4.0
183
184
        """
185
        return (1.0 + self.corr(src, tar)) / 2.0
186
187
188
if __name__ == '__main__':
189 1
    import doctest
190
191
    doctest.testmod()
192