1 | <?php |
||
2 | /** |
||
3 | * Class ReedSolomonDecoder |
||
4 | * |
||
5 | * @created 24.01.2021 |
||
6 | * @author ZXing Authors |
||
7 | * @author Smiley <[email protected]> |
||
8 | * @copyright 2021 Smiley |
||
9 | * @license Apache-2.0 |
||
10 | */ |
||
11 | |||
12 | namespace chillerlan\QRCode\Common; |
||
13 | |||
14 | use chillerlan\QRCode\QRCodeException; |
||
15 | use function array_fill, array_reverse, count; |
||
16 | |||
17 | /** |
||
18 | * Implements Reed-Solomon decoding |
||
19 | * |
||
20 | * The algorithm will not be explained here, but the following references were helpful |
||
21 | * in creating this implementation: |
||
22 | * |
||
23 | * - Bruce Maggs "Decoding Reed-Solomon Codes" (see discussion of Forney's Formula) |
||
24 | * http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps |
||
25 | * - J.I. Hall. "Chapter 5. Generalized Reed-Solomon Codes" (see discussion of Euclidean algorithm) |
||
26 | * https://users.math.msu.edu/users/halljo/classes/codenotes/GRS.pdf |
||
27 | * |
||
28 | * Much credit is due to William Rucklidge since portions of this code are an indirect |
||
29 | * port of his C++ Reed-Solomon implementation. |
||
30 | * |
||
31 | * @author Sean Owen |
||
32 | * @author William Rucklidge |
||
33 | * @author sanfordsquires |
||
34 | */ |
||
35 | final class ReedSolomonDecoder{ |
||
36 | |||
37 | private Version $version; |
||
38 | private EccLevel $eccLevel; |
||
39 | |||
40 | /** |
||
41 | * ReedSolomonDecoder constructor |
||
42 | */ |
||
43 | public function __construct(Version $version, EccLevel $eccLevel){ |
||
44 | $this->version = $version; |
||
45 | $this->eccLevel = $eccLevel; |
||
46 | } |
||
47 | |||
48 | /** |
||
49 | * Error-correct and copy data blocks together into a stream of bytes |
||
50 | */ |
||
51 | public function decode(array $rawCodewords):BitBuffer{ |
||
52 | $dataBlocks = $this->deinterleaveRawBytes($rawCodewords); |
||
53 | $dataBytes = []; |
||
54 | |||
55 | foreach($dataBlocks as [$numDataCodewords, $codewordBytes]){ |
||
56 | $corrected = $this->correctErrors($codewordBytes, $numDataCodewords); |
||
57 | |||
58 | for($i = 0; $i < $numDataCodewords; $i++){ |
||
59 | $dataBytes[] = $corrected[$i]; |
||
60 | } |
||
61 | } |
||
62 | |||
63 | return new BitBuffer($dataBytes); |
||
64 | } |
||
65 | |||
66 | /** |
||
67 | * When QR Codes use multiple data blocks, they are actually interleaved. |
||
68 | * That is, the first byte of data block 1 to n is written, then the second bytes, and so on. This |
||
69 | * method will separate the data into original blocks. |
||
70 | * |
||
71 | * @throws \chillerlan\QRCode\Decoder\QRCodeDecoderException |
||
72 | */ |
||
73 | private function deinterleaveRawBytes(array $rawCodewords):array{ |
||
74 | // Figure out the number and size of data blocks used by this version and |
||
75 | // error correction level |
||
76 | [$numEccCodewords, $eccBlocks] = $this->version->getRSBlocks($this->eccLevel); |
||
77 | |||
78 | // Now establish DataBlocks of the appropriate size and number of data codewords |
||
79 | $result = [];//new DataBlock[$totalBlocks]; |
||
80 | $numResultBlocks = 0; |
||
81 | |||
82 | foreach($eccBlocks as [$numEccBlocks, $eccPerBlock]){ |
||
83 | for($i = 0; $i < $numEccBlocks; $i++, $numResultBlocks++){ |
||
84 | $result[$numResultBlocks] = [$eccPerBlock, array_fill(0, ($numEccCodewords + $eccPerBlock), 0)]; |
||
85 | } |
||
86 | } |
||
87 | |||
88 | // All blocks have the same amount of data, except that the last n |
||
89 | // (where n may be 0) have 1 more byte. Figure out where these start. |
||
90 | /** @phan-suppress-next-line PhanTypePossiblyInvalidDimOffset */ |
||
91 | $shorterBlocksTotalCodewords = count($result[0][1]); |
||
92 | $longerBlocksStartAt = (count($result) - 1); |
||
93 | |||
94 | while($longerBlocksStartAt >= 0){ |
||
95 | $numCodewords = count($result[$longerBlocksStartAt][1]); |
||
96 | |||
97 | if($numCodewords == $shorterBlocksTotalCodewords){ |
||
98 | break; |
||
99 | } |
||
100 | |||
101 | $longerBlocksStartAt--; |
||
102 | } |
||
103 | |||
104 | $longerBlocksStartAt++; |
||
105 | |||
106 | $shorterBlocksNumDataCodewords = ($shorterBlocksTotalCodewords - $numEccCodewords); |
||
107 | // The last elements of result may be 1 element longer; |
||
108 | // first fill out as many elements as all of them have |
||
109 | $rawCodewordsOffset = 0; |
||
110 | |||
111 | for($i = 0; $i < $shorterBlocksNumDataCodewords; $i++){ |
||
112 | for($j = 0; $j < $numResultBlocks; $j++){ |
||
113 | $result[$j][1][$i] = $rawCodewords[$rawCodewordsOffset++]; |
||
114 | } |
||
115 | } |
||
116 | |||
117 | // Fill out the last data block in the longer ones |
||
118 | for($j = $longerBlocksStartAt; $j < $numResultBlocks; $j++){ |
||
119 | $result[$j][1][$shorterBlocksNumDataCodewords] = $rawCodewords[$rawCodewordsOffset++]; |
||
120 | } |
||
121 | |||
122 | // Now add in error correction blocks |
||
123 | /** @phan-suppress-next-line PhanTypePossiblyInvalidDimOffset */ |
||
124 | $max = count($result[0][1]); |
||
125 | |||
126 | for($i = $shorterBlocksNumDataCodewords; $i < $max; $i++){ |
||
127 | for($j = 0; $j < $numResultBlocks; $j++){ |
||
128 | $iOffset = ($j < $longerBlocksStartAt) ? $i : ($i + 1); |
||
129 | $result[$j][1][$iOffset] = $rawCodewords[$rawCodewordsOffset++]; |
||
130 | } |
||
131 | } |
||
132 | |||
133 | // DataBlocks containing original bytes, "de-interleaved" from representation in the QR Code |
||
134 | return $result; |
||
135 | } |
||
136 | |||
137 | /** |
||
138 | * Given data and error-correction codewords received, possibly corrupted by errors, attempts to |
||
139 | * correct the errors in-place using Reed-Solomon error correction. |
||
140 | */ |
||
141 | private function correctErrors(array $codewordBytes, int $numDataCodewords):array{ |
||
142 | // First read into an array of ints |
||
143 | $codewordsInts = []; |
||
144 | |||
145 | foreach($codewordBytes as $codewordByte){ |
||
146 | $codewordsInts[] = ($codewordByte & 0xFF); |
||
147 | } |
||
148 | |||
149 | $decoded = $this->decodeWords($codewordsInts, (count($codewordBytes) - $numDataCodewords)); |
||
150 | |||
151 | // Copy back into array of bytes -- only need to worry about the bytes that were data |
||
152 | // We don't care about errors in the error-correction codewords |
||
153 | for($i = 0; $i < $numDataCodewords; $i++){ |
||
154 | $codewordBytes[$i] = $decoded[$i]; |
||
155 | } |
||
156 | |||
157 | return $codewordBytes; |
||
158 | } |
||
159 | |||
160 | /** |
||
161 | * Decodes given set of received codewords, which include both data and error-correction |
||
162 | * codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place, |
||
163 | * in the input. |
||
164 | * |
||
165 | * @param array $received data and error-correction codewords |
||
166 | * @param int $numEccCodewords number of error-correction codewords available |
||
167 | * |
||
168 | * @return int[] |
||
169 | * @throws \chillerlan\QRCode\QRCodeException if decoding fails for any reason |
||
170 | */ |
||
171 | private function decodeWords(array $received, int $numEccCodewords):array{ |
||
172 | $poly = new GenericGFPoly($received); |
||
173 | $syndromeCoefficients = []; |
||
174 | $error = false; |
||
175 | |||
176 | for($i = 0; $i < $numEccCodewords; $i++){ |
||
177 | $syndromeCoefficients[$i] = $poly->evaluateAt(GF256::exp($i)); |
||
178 | |||
179 | if($syndromeCoefficients[$i] !== 0){ |
||
180 | $error = true; |
||
181 | } |
||
182 | } |
||
183 | |||
184 | if(!$error){ |
||
0 ignored issues
–
show
introduced
by
![]() |
|||
185 | return $received; |
||
186 | } |
||
187 | |||
188 | [$sigma, $omega] = $this->runEuclideanAlgorithm( |
||
189 | GF256::buildMonomial($numEccCodewords, 1), |
||
190 | new GenericGFPoly(array_reverse($syndromeCoefficients)), |
||
191 | $numEccCodewords |
||
192 | ); |
||
193 | |||
194 | $errorLocations = $this->findErrorLocations($sigma); |
||
195 | $errorMagnitudes = $this->findErrorMagnitudes($omega, $errorLocations); |
||
196 | $errorLocationsCount = count($errorLocations); |
||
197 | $receivedCount = count($received); |
||
198 | |||
199 | for($i = 0; $i < $errorLocationsCount; $i++){ |
||
200 | $position = ($receivedCount - 1 - GF256::log($errorLocations[$i])); |
||
201 | |||
202 | if($position < 0){ |
||
203 | throw new QRCodeException('Bad error location'); |
||
204 | } |
||
205 | |||
206 | $received[$position] ^= $errorMagnitudes[$i]; |
||
207 | } |
||
208 | |||
209 | return $received; |
||
210 | } |
||
211 | |||
212 | /** |
||
213 | * @return \chillerlan\QRCode\Common\GenericGFPoly[] [sigma, omega] |
||
214 | * @throws \chillerlan\QRCode\QRCodeException |
||
215 | */ |
||
216 | private function runEuclideanAlgorithm(GenericGFPoly $a, GenericGFPoly $b, int $z):array{ |
||
217 | // Assume a's degree is >= b's |
||
218 | if($a->getDegree() < $b->getDegree()){ |
||
219 | $temp = $a; |
||
220 | $a = $b; |
||
221 | $b = $temp; |
||
222 | } |
||
223 | |||
224 | $rLast = $a; |
||
225 | $r = $b; |
||
226 | $tLast = new GenericGFPoly([0]); |
||
227 | $t = new GenericGFPoly([1]); |
||
228 | |||
229 | // Run Euclidean algorithm until r's degree is less than z/2 |
||
230 | while((2 * $r->getDegree()) >= $z){ |
||
231 | $rLastLast = $rLast; |
||
232 | $tLastLast = $tLast; |
||
233 | $rLast = $r; |
||
234 | $tLast = $t; |
||
235 | |||
236 | // Divide rLastLast by rLast, with quotient in q and remainder in r |
||
237 | [$q, $r] = $rLastLast->divide($rLast); |
||
238 | |||
239 | $t = $q->multiply($tLast)->addOrSubtract($tLastLast); |
||
240 | |||
241 | if($r->getDegree() >= $rLast->getDegree()){ |
||
242 | throw new QRCodeException('Division algorithm failed to reduce polynomial?'); |
||
243 | } |
||
244 | } |
||
245 | |||
246 | $sigmaTildeAtZero = $t->getCoefficient(0); |
||
247 | |||
248 | if($sigmaTildeAtZero === 0){ |
||
249 | throw new QRCodeException('sigmaTilde(0) was zero'); |
||
250 | } |
||
251 | |||
252 | $inverse = GF256::inverse($sigmaTildeAtZero); |
||
253 | |||
254 | return [$t->multiplyInt($inverse), $r->multiplyInt($inverse)]; |
||
255 | } |
||
256 | |||
257 | /** |
||
258 | * @throws \chillerlan\QRCode\QRCodeException |
||
259 | */ |
||
260 | private function findErrorLocations(GenericGFPoly $errorLocator):array{ |
||
261 | // This is a direct application of Chien's search |
||
262 | $numErrors = $errorLocator->getDegree(); |
||
263 | |||
264 | if($numErrors === 1){ // shortcut |
||
265 | return [$errorLocator->getCoefficient(1)]; |
||
266 | } |
||
267 | |||
268 | $result = array_fill(0, $numErrors, 0); |
||
269 | $e = 0; |
||
270 | |||
271 | for($i = 1; $i < 256 && $e < $numErrors; $i++){ |
||
272 | if($errorLocator->evaluateAt($i) === 0){ |
||
273 | $result[$e] = GF256::inverse($i); |
||
274 | $e++; |
||
275 | } |
||
276 | } |
||
277 | |||
278 | if($e !== $numErrors){ |
||
279 | throw new QRCodeException('Error locator degree does not match number of roots'); |
||
280 | } |
||
281 | |||
282 | return $result; |
||
283 | } |
||
284 | |||
285 | /** |
||
286 | * |
||
287 | */ |
||
288 | private function findErrorMagnitudes(GenericGFPoly $errorEvaluator, array $errorLocations):array{ |
||
289 | // This is directly applying Forney's Formula |
||
290 | $s = count($errorLocations); |
||
291 | $result = []; |
||
292 | |||
293 | for($i = 0; $i < $s; $i++){ |
||
294 | $xiInverse = GF256::inverse($errorLocations[$i]); |
||
295 | $denominator = 1; |
||
296 | |||
297 | for($j = 0; $j < $s; $j++){ |
||
298 | if($i !== $j){ |
||
299 | # $denominator = GF256::multiply($denominator, GF256::addOrSubtract(1, GF256::multiply($errorLocations[$j], $xiInverse))); |
||
300 | // Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug. |
||
301 | // Below is a funny-looking workaround from Steven Parkes |
||
302 | $term = GF256::multiply($errorLocations[$j], $xiInverse); |
||
303 | $denominator = GF256::multiply($denominator, ((($term & 0x1) === 0) ? ($term | 1) : ($term & ~1))); |
||
304 | } |
||
305 | } |
||
306 | |||
307 | $result[$i] = GF256::multiply($errorEvaluator->evaluateAt($xiInverse), GF256::inverse($denominator)); |
||
308 | } |
||
309 | |||
310 | return $result; |
||
311 | } |
||
312 | |||
313 | } |
||
314 |