1
|
|
|
<?php |
2
|
|
|
/** |
3
|
|
|
* Class ReedSolomonDecoder |
4
|
|
|
* |
5
|
|
|
* @created 24.01.2021 |
6
|
|
|
* @author ZXing Authors |
7
|
|
|
* @author Smiley <[email protected]> |
8
|
|
|
* @copyright 2021 Smiley |
9
|
|
|
* @license Apache-2.0 |
10
|
|
|
*/ |
11
|
|
|
|
12
|
|
|
namespace chillerlan\QRCode\Common; |
13
|
|
|
|
14
|
|
|
use chillerlan\QRCode\QRCodeException; |
15
|
|
|
use function array_fill, array_reverse, count; |
16
|
|
|
|
17
|
|
|
/** |
18
|
|
|
* Implements Reed-Solomon decoding |
19
|
|
|
* |
20
|
|
|
* The algorithm will not be explained here, but the following references were helpful |
21
|
|
|
* in creating this implementation: |
22
|
|
|
* |
23
|
|
|
* - Bruce Maggs "Decoding Reed-Solomon Codes" (see discussion of Forney's Formula) |
24
|
|
|
* http://www.cs.cmu.edu/afs/cs.cmu.edu/project/pscico-guyb/realworld/www/rs_decode.ps |
25
|
|
|
* - J.I. Hall. "Chapter 5. Generalized Reed-Solomon Codes" (see discussion of Euclidean algorithm) |
26
|
|
|
* https://users.math.msu.edu/users/halljo/classes/codenotes/GRS.pdf |
27
|
|
|
* |
28
|
|
|
* Much credit is due to William Rucklidge since portions of this code are an indirect |
29
|
|
|
* port of his C++ Reed-Solomon implementation. |
30
|
|
|
* |
31
|
|
|
* @author Sean Owen |
32
|
|
|
* @author William Rucklidge |
33
|
|
|
* @author sanfordsquires |
34
|
|
|
*/ |
35
|
|
|
final class ReedSolomonDecoder{ |
36
|
|
|
|
37
|
|
|
private Version $version; |
38
|
|
|
private EccLevel $eccLevel; |
39
|
|
|
|
40
|
|
|
/** |
41
|
|
|
* ReedSolomonDecoder constructor |
42
|
|
|
*/ |
43
|
|
|
public function __construct(Version $version, EccLevel $eccLevel){ |
44
|
|
|
$this->version = $version; |
45
|
|
|
$this->eccLevel = $eccLevel; |
46
|
|
|
} |
47
|
|
|
|
48
|
|
|
/** |
49
|
|
|
* Error-correct and copy data blocks together into a stream of bytes |
50
|
|
|
*/ |
51
|
|
|
public function decode(array $rawCodewords):BitBuffer{ |
52
|
|
|
$dataBlocks = $this->deinterleaveRawBytes($rawCodewords); |
53
|
|
|
$dataBytes = []; |
54
|
|
|
|
55
|
|
|
foreach($dataBlocks as [$numDataCodewords, $codewordBytes]){ |
56
|
|
|
$corrected = $this->correctErrors($codewordBytes, $numDataCodewords); |
57
|
|
|
|
58
|
|
|
for($i = 0; $i < $numDataCodewords; $i++){ |
59
|
|
|
$dataBytes[] = $corrected[$i]; |
60
|
|
|
} |
61
|
|
|
} |
62
|
|
|
|
63
|
|
|
return new BitBuffer($dataBytes); |
64
|
|
|
} |
65
|
|
|
|
66
|
|
|
/** |
67
|
|
|
* When QR Codes use multiple data blocks, they are actually interleaved. |
68
|
|
|
* That is, the first byte of data block 1 to n is written, then the second bytes, and so on. This |
69
|
|
|
* method will separate the data into original blocks. |
70
|
|
|
* |
71
|
|
|
* @throws \chillerlan\QRCode\Decoder\QRCodeDecoderException |
72
|
|
|
*/ |
73
|
|
|
private function deinterleaveRawBytes(array $rawCodewords):array{ |
74
|
|
|
// Figure out the number and size of data blocks used by this version and |
75
|
|
|
// error correction level |
76
|
|
|
[$numEccCodewords, $eccBlocks] = $this->version->getRSBlocks($this->eccLevel); |
77
|
|
|
|
78
|
|
|
// Now establish DataBlocks of the appropriate size and number of data codewords |
79
|
|
|
$result = [];//new DataBlock[$totalBlocks]; |
80
|
|
|
$numResultBlocks = 0; |
81
|
|
|
|
82
|
|
|
foreach($eccBlocks as [$numEccBlocks, $eccPerBlock]){ |
83
|
|
|
for($i = 0; $i < $numEccBlocks; $i++, $numResultBlocks++){ |
84
|
|
|
$result[$numResultBlocks] = [$eccPerBlock, array_fill(0, ($numEccCodewords + $eccPerBlock), 0)]; |
85
|
|
|
} |
86
|
|
|
} |
87
|
|
|
|
88
|
|
|
// All blocks have the same amount of data, except that the last n |
89
|
|
|
// (where n may be 0) have 1 more byte. Figure out where these start. |
90
|
|
|
/** @phan-suppress-next-line PhanTypePossiblyInvalidDimOffset */ |
91
|
|
|
$shorterBlocksTotalCodewords = count($result[0][1]); |
92
|
|
|
$longerBlocksStartAt = (count($result) - 1); |
93
|
|
|
|
94
|
|
|
while($longerBlocksStartAt >= 0){ |
95
|
|
|
$numCodewords = count($result[$longerBlocksStartAt][1]); |
96
|
|
|
|
97
|
|
|
if($numCodewords == $shorterBlocksTotalCodewords){ |
98
|
|
|
break; |
99
|
|
|
} |
100
|
|
|
|
101
|
|
|
$longerBlocksStartAt--; |
102
|
|
|
} |
103
|
|
|
|
104
|
|
|
$longerBlocksStartAt++; |
105
|
|
|
|
106
|
|
|
$shorterBlocksNumDataCodewords = ($shorterBlocksTotalCodewords - $numEccCodewords); |
107
|
|
|
// The last elements of result may be 1 element longer; |
108
|
|
|
// first fill out as many elements as all of them have |
109
|
|
|
$rawCodewordsOffset = 0; |
110
|
|
|
|
111
|
|
|
for($i = 0; $i < $shorterBlocksNumDataCodewords; $i++){ |
112
|
|
|
for($j = 0; $j < $numResultBlocks; $j++){ |
113
|
|
|
$result[$j][1][$i] = $rawCodewords[$rawCodewordsOffset++]; |
114
|
|
|
} |
115
|
|
|
} |
116
|
|
|
|
117
|
|
|
// Fill out the last data block in the longer ones |
118
|
|
|
for($j = $longerBlocksStartAt; $j < $numResultBlocks; $j++){ |
119
|
|
|
$result[$j][1][$shorterBlocksNumDataCodewords] = $rawCodewords[$rawCodewordsOffset++]; |
120
|
|
|
} |
121
|
|
|
|
122
|
|
|
// Now add in error correction blocks |
123
|
|
|
/** @phan-suppress-next-line PhanTypePossiblyInvalidDimOffset */ |
124
|
|
|
$max = count($result[0][1]); |
125
|
|
|
|
126
|
|
|
for($i = $shorterBlocksNumDataCodewords; $i < $max; $i++){ |
127
|
|
|
for($j = 0; $j < $numResultBlocks; $j++){ |
128
|
|
|
$iOffset = ($j < $longerBlocksStartAt) ? $i : ($i + 1); |
129
|
|
|
$result[$j][1][$iOffset] = $rawCodewords[$rawCodewordsOffset++]; |
130
|
|
|
} |
131
|
|
|
} |
132
|
|
|
|
133
|
|
|
// DataBlocks containing original bytes, "de-interleaved" from representation in the QR Code |
134
|
|
|
return $result; |
135
|
|
|
} |
136
|
|
|
|
137
|
|
|
/** |
138
|
|
|
* Given data and error-correction codewords received, possibly corrupted by errors, attempts to |
139
|
|
|
* correct the errors in-place using Reed-Solomon error correction. |
140
|
|
|
*/ |
141
|
|
|
private function correctErrors(array $codewordBytes, int $numDataCodewords):array{ |
142
|
|
|
// First read into an array of ints |
143
|
|
|
$codewordsInts = []; |
144
|
|
|
|
145
|
|
|
foreach($codewordBytes as $codewordByte){ |
146
|
|
|
$codewordsInts[] = ($codewordByte & 0xFF); |
147
|
|
|
} |
148
|
|
|
|
149
|
|
|
$decoded = $this->decodeWords($codewordsInts, (count($codewordBytes) - $numDataCodewords)); |
150
|
|
|
|
151
|
|
|
// Copy back into array of bytes -- only need to worry about the bytes that were data |
152
|
|
|
// We don't care about errors in the error-correction codewords |
153
|
|
|
for($i = 0; $i < $numDataCodewords; $i++){ |
154
|
|
|
$codewordBytes[$i] = $decoded[$i]; |
155
|
|
|
} |
156
|
|
|
|
157
|
|
|
return $codewordBytes; |
158
|
|
|
} |
159
|
|
|
|
160
|
|
|
/** |
161
|
|
|
* Decodes given set of received codewords, which include both data and error-correction |
162
|
|
|
* codewords. Really, this means it uses Reed-Solomon to detect and correct errors, in-place, |
163
|
|
|
* in the input. |
164
|
|
|
* |
165
|
|
|
* @param array $received data and error-correction codewords |
166
|
|
|
* @param int $numEccCodewords number of error-correction codewords available |
167
|
|
|
* |
168
|
|
|
* @return int[] |
169
|
|
|
* @throws \chillerlan\QRCode\QRCodeException if decoding fails for any reason |
170
|
|
|
*/ |
171
|
|
|
private function decodeWords(array $received, int $numEccCodewords):array{ |
172
|
|
|
$poly = new GenericGFPoly($received); |
173
|
|
|
$syndromeCoefficients = []; |
174
|
|
|
$error = false; |
175
|
|
|
|
176
|
|
|
for($i = 0; $i < $numEccCodewords; $i++){ |
177
|
|
|
$syndromeCoefficients[$i] = $poly->evaluateAt(GF256::exp($i)); |
178
|
|
|
|
179
|
|
|
if($syndromeCoefficients[$i] !== 0){ |
180
|
|
|
$error = true; |
181
|
|
|
} |
182
|
|
|
} |
183
|
|
|
|
184
|
|
|
if(!$error){ |
|
|
|
|
185
|
|
|
return $received; |
186
|
|
|
} |
187
|
|
|
|
188
|
|
|
[$sigma, $omega] = $this->runEuclideanAlgorithm( |
189
|
|
|
GF256::buildMonomial($numEccCodewords, 1), |
190
|
|
|
new GenericGFPoly(array_reverse($syndromeCoefficients)), |
191
|
|
|
$numEccCodewords |
192
|
|
|
); |
193
|
|
|
|
194
|
|
|
$errorLocations = $this->findErrorLocations($sigma); |
195
|
|
|
$errorMagnitudes = $this->findErrorMagnitudes($omega, $errorLocations); |
196
|
|
|
$errorLocationsCount = count($errorLocations); |
197
|
|
|
$receivedCount = count($received); |
198
|
|
|
|
199
|
|
|
for($i = 0; $i < $errorLocationsCount; $i++){ |
200
|
|
|
$position = ($receivedCount - 1 - GF256::log($errorLocations[$i])); |
201
|
|
|
|
202
|
|
|
if($position < 0){ |
203
|
|
|
throw new QRCodeException('Bad error location'); |
204
|
|
|
} |
205
|
|
|
|
206
|
|
|
$received[$position] ^= $errorMagnitudes[$i]; |
207
|
|
|
} |
208
|
|
|
|
209
|
|
|
return $received; |
210
|
|
|
} |
211
|
|
|
|
212
|
|
|
/** |
213
|
|
|
* @return \chillerlan\QRCode\Common\GenericGFPoly[] [sigma, omega] |
214
|
|
|
* @throws \chillerlan\QRCode\QRCodeException |
215
|
|
|
*/ |
216
|
|
|
private function runEuclideanAlgorithm(GenericGFPoly $a, GenericGFPoly $b, int $z):array{ |
217
|
|
|
// Assume a's degree is >= b's |
218
|
|
|
if($a->getDegree() < $b->getDegree()){ |
219
|
|
|
$temp = $a; |
220
|
|
|
$a = $b; |
221
|
|
|
$b = $temp; |
222
|
|
|
} |
223
|
|
|
|
224
|
|
|
$rLast = $a; |
225
|
|
|
$r = $b; |
226
|
|
|
$tLast = new GenericGFPoly([0]); |
227
|
|
|
$t = new GenericGFPoly([1]); |
228
|
|
|
|
229
|
|
|
// Run Euclidean algorithm until r's degree is less than z/2 |
230
|
|
|
while((2 * $r->getDegree()) >= $z){ |
231
|
|
|
$rLastLast = $rLast; |
232
|
|
|
$tLastLast = $tLast; |
233
|
|
|
$rLast = $r; |
234
|
|
|
$tLast = $t; |
235
|
|
|
|
236
|
|
|
// Divide rLastLast by rLast, with quotient in q and remainder in r |
237
|
|
|
[$q, $r] = $rLastLast->divide($rLast); |
238
|
|
|
|
239
|
|
|
$t = $q->multiply($tLast)->addOrSubtract($tLastLast); |
240
|
|
|
|
241
|
|
|
if($r->getDegree() >= $rLast->getDegree()){ |
242
|
|
|
throw new QRCodeException('Division algorithm failed to reduce polynomial?'); |
243
|
|
|
} |
244
|
|
|
} |
245
|
|
|
|
246
|
|
|
$sigmaTildeAtZero = $t->getCoefficient(0); |
247
|
|
|
|
248
|
|
|
if($sigmaTildeAtZero === 0){ |
249
|
|
|
throw new QRCodeException('sigmaTilde(0) was zero'); |
250
|
|
|
} |
251
|
|
|
|
252
|
|
|
$inverse = GF256::inverse($sigmaTildeAtZero); |
253
|
|
|
|
254
|
|
|
return [$t->multiplyInt($inverse), $r->multiplyInt($inverse)]; |
255
|
|
|
} |
256
|
|
|
|
257
|
|
|
/** |
258
|
|
|
* @throws \chillerlan\QRCode\QRCodeException |
259
|
|
|
*/ |
260
|
|
|
private function findErrorLocations(GenericGFPoly $errorLocator):array{ |
261
|
|
|
// This is a direct application of Chien's search |
262
|
|
|
$numErrors = $errorLocator->getDegree(); |
263
|
|
|
|
264
|
|
|
if($numErrors === 1){ // shortcut |
265
|
|
|
return [$errorLocator->getCoefficient(1)]; |
266
|
|
|
} |
267
|
|
|
|
268
|
|
|
$result = array_fill(0, $numErrors, 0); |
269
|
|
|
$e = 0; |
270
|
|
|
|
271
|
|
|
for($i = 1; $i < 256 && $e < $numErrors; $i++){ |
272
|
|
|
if($errorLocator->evaluateAt($i) === 0){ |
273
|
|
|
$result[$e] = GF256::inverse($i); |
274
|
|
|
$e++; |
275
|
|
|
} |
276
|
|
|
} |
277
|
|
|
|
278
|
|
|
if($e !== $numErrors){ |
279
|
|
|
throw new QRCodeException('Error locator degree does not match number of roots'); |
280
|
|
|
} |
281
|
|
|
|
282
|
|
|
return $result; |
283
|
|
|
} |
284
|
|
|
|
285
|
|
|
/** |
286
|
|
|
* |
287
|
|
|
*/ |
288
|
|
|
private function findErrorMagnitudes(GenericGFPoly $errorEvaluator, array $errorLocations):array{ |
289
|
|
|
// This is directly applying Forney's Formula |
290
|
|
|
$s = count($errorLocations); |
291
|
|
|
$result = []; |
292
|
|
|
|
293
|
|
|
for($i = 0; $i < $s; $i++){ |
294
|
|
|
$xiInverse = GF256::inverse($errorLocations[$i]); |
295
|
|
|
$denominator = 1; |
296
|
|
|
|
297
|
|
|
for($j = 0; $j < $s; $j++){ |
298
|
|
|
if($i !== $j){ |
299
|
|
|
# $denominator = GF256::multiply($denominator, GF256::addOrSubtract(1, GF256::multiply($errorLocations[$j], $xiInverse))); |
300
|
|
|
// Above should work but fails on some Apple and Linux JDKs due to a Hotspot bug. |
301
|
|
|
// Below is a funny-looking workaround from Steven Parkes |
302
|
|
|
$term = GF256::multiply($errorLocations[$j], $xiInverse); |
303
|
|
|
$denominator = GF256::multiply($denominator, ((($term & 0x1) === 0) ? ($term | 1) : ($term & ~1))); |
304
|
|
|
} |
305
|
|
|
} |
306
|
|
|
|
307
|
|
|
$result[$i] = GF256::multiply($errorEvaluator->evaluateAt($xiInverse), GF256::inverse($denominator)); |
308
|
|
|
} |
309
|
|
|
|
310
|
|
|
return $result; |
311
|
|
|
} |
312
|
|
|
|
313
|
|
|
} |
314
|
|
|
|