1
|
|
|
import unittest |
2
|
|
|
|
3
|
|
|
from numpy.random import normal, random |
4
|
|
|
|
5
|
|
|
from pysie.stats.distributions import MeanSamplingDistribution, DistributionFamily, ProportionSamplingDistribution |
6
|
|
|
from pysie.stats.samples import Sample, SampleDistribution |
7
|
|
|
|
8
|
|
|
|
9
|
|
|
class MeanSamplingDistributionUnitTest(unittest.TestCase): |
10
|
|
|
|
11
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
12
|
|
|
sample_mean = 0 |
13
|
|
|
sample_sd = 1 |
14
|
|
|
sample_size = 31 |
15
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, sample_size=sample_size) |
16
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
17
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
18
|
|
|
+ ', standard_error=' + str(sampling_distribution.standard_error) + ')') |
19
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
20
|
|
View Code Duplication |
|
|
|
|
|
21
|
|
|
def test_confidence_interval_with_sample_normal(self): |
22
|
|
|
mu = 0.0 |
23
|
|
|
sigma = 1.0 |
24
|
|
|
sample_size = 31 |
25
|
|
|
sample = Sample() |
26
|
|
|
|
27
|
|
|
for i in range(sample_size): |
28
|
|
|
sample.add_numeric(normal(mu, sigma)) |
29
|
|
|
|
30
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
31
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
32
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
33
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
34
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
35
|
|
|
|
36
|
|
|
def test_confidence_interval_with_sample_stats_student(self): |
37
|
|
|
sample_mean = 0 |
38
|
|
|
sample_sd = 1 |
39
|
|
|
sample_size = 29 |
40
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_mean=sample_mean, sample_sd=sample_sd, sample_size=sample_size) |
41
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
42
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
43
|
|
View Code Duplication |
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
|
|
|
|
44
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
45
|
|
|
|
46
|
|
|
def test_confidence_interval_with_sample_student(self): |
47
|
|
|
mu = 0.0 |
48
|
|
|
sigma = 1.0 |
49
|
|
|
sample_size = 29 |
50
|
|
|
sample = Sample() |
51
|
|
|
|
52
|
|
|
for i in range(sample_size): |
53
|
|
|
sample.add_numeric(normal(mu, sigma)) |
54
|
|
|
|
55
|
|
|
sampling_distribution = MeanSamplingDistribution(sample_distribution=SampleDistribution(sample)) |
56
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.student_t) |
57
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
58
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
59
|
|
|
print('confidence interval for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
60
|
|
|
|
61
|
|
|
|
62
|
|
|
class ProportionSamplingDistributionUnitTest(unittest.TestCase): |
63
|
|
|
|
64
|
|
|
def test_confidence_interval_with_sample_stats_normal(self): |
65
|
|
|
sample_proportion = 0.6 |
66
|
|
|
sample_size = 31 |
67
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_proportion=sample_proportion, |
68
|
|
|
sample_size=sample_size) |
69
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
70
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
71
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
72
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
73
|
|
|
|
74
|
|
View Code Duplication |
def test_confidence_interval_with_sample_normal(self): |
|
|
|
|
75
|
|
|
sample = Sample() |
76
|
|
|
|
77
|
|
|
for i in range(100): |
78
|
|
|
if random() <= 0.6: |
79
|
|
|
sample.add_category("OK") |
80
|
|
|
else: |
81
|
|
|
sample.add_category("CANCEL") |
82
|
|
|
|
83
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
84
|
|
|
categorical_value="OK")) |
85
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
86
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
87
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
88
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
89
|
|
|
|
90
|
|
|
def test_confidence_interval_with_sample_stats_simulation(self): |
91
|
|
|
sample_proportion = 0.6 |
92
|
|
|
sample_size = 10 |
93
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_proportion=sample_proportion, |
94
|
|
|
sample_size=sample_size) |
95
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
96
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
97
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
98
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
99
|
|
|
|
100
|
|
View Code Duplication |
def test_confidence_interval_with_sample_simulation(self): |
|
|
|
|
101
|
|
|
sample = Sample() |
102
|
|
|
|
103
|
|
|
for i in range(10): |
104
|
|
|
if random() <= 0.6: |
105
|
|
|
sample.add_category("OK") |
106
|
|
|
else: |
107
|
|
|
sample.add_category("CANCEL") |
108
|
|
|
|
109
|
|
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
110
|
|
|
categorical_value="OK")) |
111
|
|
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
112
|
|
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
113
|
|
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
114
|
|
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
115
|
|
|
|
116
|
|
|
|
117
|
|
|
if __name__ == '__main__': |
118
|
|
|
unittest.main() |
119
|
|
|
|