|
@@ 100-114 (lines=15) @@
|
| 97 |
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
| 98 |
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
| 99 |
|
|
| 100 |
|
def test_confidence_interval_with_sample_simulation(self): |
| 101 |
|
sample = Sample() |
| 102 |
|
|
| 103 |
|
for i in range(10): |
| 104 |
|
if random() <= 0.6: |
| 105 |
|
sample.add_category("OK") |
| 106 |
|
else: |
| 107 |
|
sample.add_category("CANCEL") |
| 108 |
|
|
| 109 |
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
| 110 |
|
categorical_value="OK")) |
| 111 |
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.simulation) |
| 112 |
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
| 113 |
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
| 114 |
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
| 115 |
|
|
| 116 |
|
|
| 117 |
|
if __name__ == '__main__': |
|
@@ 74-88 (lines=15) @@
|
| 71 |
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
| 72 |
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
| 73 |
|
|
| 74 |
|
def test_confidence_interval_with_sample_normal(self): |
| 75 |
|
sample = Sample() |
| 76 |
|
|
| 77 |
|
for i in range(100): |
| 78 |
|
if random() <= 0.6: |
| 79 |
|
sample.add_category("OK") |
| 80 |
|
else: |
| 81 |
|
sample.add_category("CANCEL") |
| 82 |
|
|
| 83 |
|
sampling_distribution = ProportionSamplingDistribution(sample_distribution=SampleDistribution(sample, |
| 84 |
|
categorical_value="OK")) |
| 85 |
|
self.assertEqual(sampling_distribution.distribution_family, DistributionFamily.normal) |
| 86 |
|
print('sampling distribution: (point_estimate = ' + str(sampling_distribution.point_estimate) |
| 87 |
|
+ ', standard_error = ' + str(sampling_distribution.standard_error) + ')') |
| 88 |
|
print('confidence level for 95% confidence level: ' + str(sampling_distribution.confidence_interval(0.95))) |
| 89 |
|
|
| 90 |
|
def test_confidence_interval_with_sample_stats_simulation(self): |
| 91 |
|
sample_proportion = 0.6 |