Passed
Push — mpeta ( 1841cb...62640f )
by Konstantinos
03:46
created

datapoint_files   A

Complexity

Total Complexity 32

Size/Duplication

Total Lines 167
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
eloc 132
dl 0
loc 167
rs 9.84
c 0
b 0
f 0
wmc 32

4 Functions

Rating   Name   Duplication   Size   Complexity  
F datapoint_files_to_test() 0 148 28
A sample_collaped_json() 0 3 1
A test_datapoints_full_file_path() 0 4 2
A sample_json() 0 3 1
1
import pytest
2
3
4
@pytest.fixture
5
def test_datapoints_full_file_path():
6
    import os
7
    return lambda file_name: os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'dts', file_name)
8
9
10
@pytest.fixture
11
def sample_json(test_datapoints_full_file_path):
12
    return test_datapoints_full_file_path('sample-data.jsonlines')
13
14
@pytest.fixture
15
def sample_collaped_json(test_datapoints_full_file_path):
16
    return test_datapoints_full_file_path('sample-data-collapsed.jsonlines')
17
18
19
@pytest.fixture
20
def datapoint_files_to_test(sample_collaped_json, sample_json):
21
    import pandas as pd
22
    import numpy as np
23
    return {
24
        'data_1': {
25
            'data_path': sample_collaped_json,
26
            'nb_rows': 100,
27
            'nb_columns': 46,
28
            'type_distros': {
29
                'type': {str: 100},
30
                'flavors': {list: 98, type(None): 2},
31
            },
32
            'value_distros': {
33
                'type': {'hybrid': 48, 'sativa': 19, 'indica': 33},
34
            },
35
            'row': {
36
                0: {
37
                    'flavors': [lambda v: v == ["Chemical", "Pine", "Diesel"],
38
                                lambda v: type(v) == list,
39
                                ],
40
                    'type': [lambda v: v == 'hybrid',
41
                             lambda v: type(v) == str,
42
                             ],
43
                },
44
                7: {
45
                    'flavors': [lambda v: v == ["Earthy", "Pungent", "Sweet"],
46
                                lambda v: type(v) == list,
47
                                ],
48
                    'type': [lambda v: v == 'hybrid',
49
                             lambda v: type(v) == str,
50
                             ],
51
                },
52
                76: {
53
                    'flavors': [lambda v: v is None,
54
                                lambda v: pd.isnull(v),
55
                                lambda v: isinstance(v, type(None)),
56
                                ],
57
                },
58
                87: {
59
                    'flavors': [lambda v: v is None,
60
                                lambda v: type(v) == type(None),
61
                                ],
62
                },
63
            },
64
            'column_names': (
65
                'flavors',
66
                'name',
67
                'description',
68
                'image_urls',
69
                'parents',
70
                '_id',
71
                'type',
72
                'image_paths',
73
                'Aroused',
74
                'Creative',
75
                'Energetic',
76
                'Euphoric',
77
                'Focused',
78
                'Giggly',
79
                'Happy',
80
                'Hungry',
81
                'Relaxed',
82
                'Sleepy',
83
                'Talkative',
84
                'Tingly',
85
                'Uplifted',
86
                'Cramps',
87
                'Depression',
88
                'Eye Pressure',
89
                'Fatigue',
90
                'Headaches',
91
                'Inflammation',
92
                'Insomnia',
93
                'Lack of Appetite',
94
                'Muscle Spasms',
95
                'Nausea',
96
                'Pain',
97
                'Seizures',
98
                'Spasticity',
99
                'Stress',
100
                'Anxious',
101
                'Dizzy',
102
                'Dry Eyes',
103
                'Dry Mouth',
104
                'Headache',
105
                'Paranoid',
106
                'difficulty',
107
                'flowering',
108
                'height',
109
                'stretch',
110
                'yield',
111
            ),
112
        },
113
        'data_2': {
114
            'data_path': sample_json,
115
            'nb_rows': 100,
116
            'nb_columns': 12,
117
            'type_distros': {
118
                'type': {str: 100},
119
                'flavors': {list: 98, float: 2},
120
            },
121
            'value_distros': {
122
                'type': {'hybrid': 48, 'sativa': 19, 'indica': 33},
123
            },
124
            'row': {
125
                0: {
126
                    'flavors': [lambda v: v == ["Chemical", "Pine", "Diesel"],
127
                                lambda v: type(v) == list,
128
                                ],
129
                    'type': [lambda v: v == 'hybrid',
130
                             lambda v: type(v) == str
131
                             ],
132
                },
133
                7: {
134
                    'flavors': [lambda v: v == ["Earthy", "Pungent", "Sweet"],
135
                                lambda v: type(v) == list,
136
                                ],
137
                    'type': [lambda v: v == 'hybrid',
138
                             lambda v: type(v) == str
139
                             ],
140
                },
141
                76: {
142
                    'flavors': [lambda v: np.isnan(v),
143
                                lambda v: pd.isnull(v),
144
                                lambda v: type(v) == float,
145
                                ],
146
                },
147
                87: {
148
                    'flavors': [lambda v: np.isnan(v),
149
                                lambda v: pd.isnull(v),
150
                                lambda v: type(v) == float,
151
                                ],
152
                },
153
            },
154
            'column_names': (
155
                'flavors',
156
                'name',
157
                'medical',
158
                'description',
159
                'image_urls',
160
                'parents',
161
                'negatives',
162
                'grow_info',
163
                '_id',
164
                'type',
165
                'image_paths',
166
                'effects',
167
            ),
168
        },
169
    }
170