| Conditions | 28 |
| Total Lines | 148 |
| Code Lines | 120 |
| Lines | 0 |
| Ratio | 0 % |
| Changes | 0 | ||
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like datapoint_files.datapoint_files_to_test() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | import pytest |
||
| 19 | @pytest.fixture |
||
| 20 | def datapoint_files_to_test(sample_collaped_json, sample_json): |
||
| 21 | import pandas as pd |
||
| 22 | import numpy as np |
||
| 23 | return { |
||
| 24 | 'data_1': { |
||
| 25 | 'data_path': sample_collaped_json, |
||
| 26 | 'nb_rows': 100, |
||
| 27 | 'nb_columns': 46, |
||
| 28 | 'type_distros': { |
||
| 29 | 'type': {str: 100}, |
||
| 30 | 'flavors': {list: 98, type(None): 2}, |
||
| 31 | }, |
||
| 32 | 'value_distros': { |
||
| 33 | 'type': {'hybrid': 48, 'sativa': 19, 'indica': 33}, |
||
| 34 | }, |
||
| 35 | 'row': { |
||
| 36 | 0: { |
||
| 37 | 'flavors': [lambda v: v == ["Chemical", "Pine", "Diesel"], |
||
| 38 | lambda v: type(v) == list, |
||
| 39 | ], |
||
| 40 | 'type': [lambda v: v == 'hybrid', |
||
| 41 | lambda v: type(v) == str, |
||
| 42 | ], |
||
| 43 | }, |
||
| 44 | 7: { |
||
| 45 | 'flavors': [lambda v: v == ["Earthy", "Pungent", "Sweet"], |
||
| 46 | lambda v: type(v) == list, |
||
| 47 | ], |
||
| 48 | 'type': [lambda v: v == 'hybrid', |
||
| 49 | lambda v: type(v) == str, |
||
| 50 | ], |
||
| 51 | }, |
||
| 52 | 76: { |
||
| 53 | 'flavors': [lambda v: v is None, |
||
| 54 | lambda v: pd.isnull(v), |
||
| 55 | lambda v: isinstance(v, type(None)), |
||
| 56 | ], |
||
| 57 | }, |
||
| 58 | 87: { |
||
| 59 | 'flavors': [lambda v: v is None, |
||
| 60 | lambda v: type(v) == type(None), |
||
| 61 | ], |
||
| 62 | }, |
||
| 63 | }, |
||
| 64 | 'column_names': ( |
||
| 65 | 'flavors', |
||
| 66 | 'name', |
||
| 67 | 'description', |
||
| 68 | 'image_urls', |
||
| 69 | 'parents', |
||
| 70 | '_id', |
||
| 71 | 'type', |
||
| 72 | 'image_paths', |
||
| 73 | 'Aroused', |
||
| 74 | 'Creative', |
||
| 75 | 'Energetic', |
||
| 76 | 'Euphoric', |
||
| 77 | 'Focused', |
||
| 78 | 'Giggly', |
||
| 79 | 'Happy', |
||
| 80 | 'Hungry', |
||
| 81 | 'Relaxed', |
||
| 82 | 'Sleepy', |
||
| 83 | 'Talkative', |
||
| 84 | 'Tingly', |
||
| 85 | 'Uplifted', |
||
| 86 | 'Cramps', |
||
| 87 | 'Depression', |
||
| 88 | 'Eye Pressure', |
||
| 89 | 'Fatigue', |
||
| 90 | 'Headaches', |
||
| 91 | 'Inflammation', |
||
| 92 | 'Insomnia', |
||
| 93 | 'Lack of Appetite', |
||
| 94 | 'Muscle Spasms', |
||
| 95 | 'Nausea', |
||
| 96 | 'Pain', |
||
| 97 | 'Seizures', |
||
| 98 | 'Spasticity', |
||
| 99 | 'Stress', |
||
| 100 | 'Anxious', |
||
| 101 | 'Dizzy', |
||
| 102 | 'Dry Eyes', |
||
| 103 | 'Dry Mouth', |
||
| 104 | 'Headache', |
||
| 105 | 'Paranoid', |
||
| 106 | 'difficulty', |
||
| 107 | 'flowering', |
||
| 108 | 'height', |
||
| 109 | 'stretch', |
||
| 110 | 'yield', |
||
| 111 | ), |
||
| 112 | }, |
||
| 113 | 'data_2': { |
||
| 114 | 'data_path': sample_json, |
||
| 115 | 'nb_rows': 100, |
||
| 116 | 'nb_columns': 12, |
||
| 117 | 'type_distros': { |
||
| 118 | 'type': {str: 100}, |
||
| 119 | 'flavors': {list: 98, float: 2}, |
||
| 120 | }, |
||
| 121 | 'value_distros': { |
||
| 122 | 'type': {'hybrid': 48, 'sativa': 19, 'indica': 33}, |
||
| 123 | }, |
||
| 124 | 'row': { |
||
| 125 | 0: { |
||
| 126 | 'flavors': [lambda v: v == ["Chemical", "Pine", "Diesel"], |
||
| 127 | lambda v: type(v) == list, |
||
| 128 | ], |
||
| 129 | 'type': [lambda v: v == 'hybrid', |
||
| 130 | lambda v: type(v) == str |
||
| 131 | ], |
||
| 132 | }, |
||
| 133 | 7: { |
||
| 134 | 'flavors': [lambda v: v == ["Earthy", "Pungent", "Sweet"], |
||
| 135 | lambda v: type(v) == list, |
||
| 136 | ], |
||
| 137 | 'type': [lambda v: v == 'hybrid', |
||
| 138 | lambda v: type(v) == str |
||
| 139 | ], |
||
| 140 | }, |
||
| 141 | 76: { |
||
| 142 | 'flavors': [lambda v: np.isnan(v), |
||
| 143 | lambda v: pd.isnull(v), |
||
| 144 | lambda v: type(v) == float, |
||
| 145 | ], |
||
| 146 | }, |
||
| 147 | 87: { |
||
| 148 | 'flavors': [lambda v: np.isnan(v), |
||
| 149 | lambda v: pd.isnull(v), |
||
| 150 | lambda v: type(v) == float, |
||
| 151 | ], |
||
| 152 | }, |
||
| 153 | }, |
||
| 154 | 'column_names': ( |
||
| 155 | 'flavors', |
||
| 156 | 'name', |
||
| 157 | 'medical', |
||
| 158 | 'description', |
||
| 159 | 'image_urls', |
||
| 160 | 'parents', |
||
| 161 | 'negatives', |
||
| 162 | 'grow_info', |
||
| 163 | '_id', |
||
| 164 | 'type', |
||
| 165 | 'image_paths', |
||
| 166 | 'effects', |
||
| 167 | ), |
||
| 170 |