Conditions | 22 |
Total Lines | 100 |
Lines | 36 |
Ratio | 36 % |
Changes | 4 | ||
Bugs | 1 | Features | 0 |
Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.
For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.
Commonly applied refactorings include:
If many parameters/temporary variables are present:
Complex classes like fit() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
1 | #!/usr/bin/env python |
||
17 | def fit(model_filename, spectrum_filenames, threads, clobber, from_filename, |
||
18 | **kwargs): |
||
19 | """ |
||
20 | Fit a series of spectra. |
||
21 | """ |
||
22 | |||
23 | import AnniesLasso as tc |
||
24 | |||
25 | model = tc.load_model(model_filename, threads=threads) |
||
26 | logger = logging.getLogger("AnniesLasso") |
||
27 | assert model.is_trained |
||
28 | |||
29 | chunk_size = kwargs.pop("parallel_chunks", 1000) if threads > 1 else 1 |
||
30 | fluxes = [] |
||
31 | ivars = [] |
||
32 | output_filenames = [] |
||
33 | failures = 0 |
||
34 | |||
35 | fit_velocity = kwargs.pop("fit_velocity", False) |
||
36 | |||
37 | # MAGIC HACK |
||
38 | delete_meta_keys = ("fjac", ) # To save space... |
||
39 | initial_labels = loadtxt("initial_labels.txt") |
||
40 | |||
41 | if from_filename: |
||
42 | with open(spectrum_filenames[0], "r") as fp: |
||
43 | _ = list(map(str.strip, fp.readlines())) |
||
44 | spectrum_filenames = _ |
||
45 | |||
46 | output_suffix = kwargs.get("output_suffix", None) |
||
47 | output_suffix = "result" if output_suffix is None else str(output_suffix) |
||
48 | N = len(spectrum_filenames) |
||
49 | for i, filename in enumerate(spectrum_filenames): |
||
50 | logger.info("At spectrum {0}/{1}: {2}".format(i + 1, N, filename)) |
||
51 | |||
52 | basename, _ = os.path.splitext(filename) |
||
53 | output_filename = "-".join([basename, output_suffix]) + ".pkl" |
||
54 | |||
55 | if os.path.exists(output_filename) and not clobber: |
||
56 | logger.info("Output filename {} already exists and not clobbering."\ |
||
57 | .format(output_filename)) |
||
58 | continue |
||
59 | |||
60 | try: |
||
61 | with open(filename, "rb") as fp: |
||
62 | flux, ivar = pickle.load(fp) |
||
63 | fluxes.append(flux) |
||
64 | ivars.append(ivar) |
||
65 | |||
66 | output_filenames.append(output_filename) |
||
67 | |||
68 | except: |
||
69 | logger.exception("Error occurred loading {}".format(filename)) |
||
70 | failures += 1 |
||
71 | |||
72 | else: |
||
73 | View Code Duplication | if len(output_filenames) >= chunk_size: |
|
|
|||
74 | |||
75 | results, covs, metas = model.fit(fluxes, ivars, |
||
76 | initial_labels=initial_labels, model_redshift=fit_velocity, |
||
77 | full_output=True) |
||
78 | |||
79 | for result, cov, meta, output_filename \ |
||
80 | in zip(results, covs, metas, output_filenames): |
||
81 | |||
82 | for key in delete_meta_keys: |
||
83 | if key in meta: |
||
84 | del meta[key] |
||
85 | |||
86 | with open(output_filename, "wb") as fp: |
||
87 | pickle.dump((result, cov, meta), fp, 2) # For legacy. |
||
88 | logger.info("Saved output to {}".format(output_filename)) |
||
89 | |||
90 | del output_filenames[0:], fluxes[0:], ivars[0:] |
||
91 | |||
92 | |||
93 | View Code Duplication | if len(output_filenames) > 0: |
|
94 | |||
95 | results, covs, metas = model.fit(fluxes, ivars, |
||
96 | initial_labels=initial_labels, model_redshift=fit_velocity, |
||
97 | full_output=True) |
||
98 | |||
99 | for result, cov, meta, output_filename \ |
||
100 | in zip(results, covs, metas, output_filenames): |
||
101 | |||
102 | for key in delete_meta_keys: |
||
103 | if key in meta: |
||
104 | del meta[key] |
||
105 | |||
106 | with open(output_filename, "wb") as fp: |
||
107 | pickle.dump((result, cov, meta), fp, 2) # For legacy. |
||
108 | logger.info("Saved output to {}".format(output_filename)) |
||
109 | |||
110 | del output_filenames[0:], fluxes[0:], ivars[0:] |
||
111 | |||
112 | |||
113 | logger.info("Number of failures: {}".format(failures)) |
||
114 | logger.info("Number of successes: {}".format(N - failures)) |
||
115 | |||
116 | return None |
||
117 | |||
318 |