@@ 93-110 (lines=18) @@ | ||
90 | del output_filenames[0:], fluxes[0:], ivars[0:] |
|
91 | ||
92 | ||
93 | if len(output_filenames) > 0: |
|
94 | ||
95 | results, covs, metas = model.fit(fluxes, ivars, |
|
96 | initial_labels=initial_labels, model_redshift=fit_velocity, |
|
97 | full_output=True) |
|
98 | ||
99 | for result, cov, meta, output_filename \ |
|
100 | in zip(results, covs, metas, output_filenames): |
|
101 | ||
102 | for key in delete_meta_keys: |
|
103 | if key in meta: |
|
104 | del meta[key] |
|
105 | ||
106 | with open(output_filename, "wb") as fp: |
|
107 | pickle.dump((result, cov, meta), fp, 2) # For legacy. |
|
108 | logger.info("Saved output to {}".format(output_filename)) |
|
109 | ||
110 | del output_filenames[0:], fluxes[0:], ivars[0:] |
|
111 | ||
112 | ||
113 | logger.info("Number of failures: {}".format(failures)) |
|
@@ 73-90 (lines=18) @@ | ||
70 | failures += 1 |
|
71 | ||
72 | else: |
|
73 | if len(output_filenames) >= chunk_size: |
|
74 | ||
75 | results, covs, metas = model.fit(fluxes, ivars, |
|
76 | initial_labels=initial_labels, model_redshift=fit_velocity, |
|
77 | full_output=True) |
|
78 | ||
79 | for result, cov, meta, output_filename \ |
|
80 | in zip(results, covs, metas, output_filenames): |
|
81 | ||
82 | for key in delete_meta_keys: |
|
83 | if key in meta: |
|
84 | del meta[key] |
|
85 | ||
86 | with open(output_filename, "wb") as fp: |
|
87 | pickle.dump((result, cov, meta), fp, 2) # For legacy. |
|
88 | logger.info("Saved output to {}".format(output_filename)) |
|
89 | ||
90 | del output_filenames[0:], fluxes[0:], ivars[0:] |
|
91 | ||
92 | ||
93 | if len(output_filenames) > 0: |