1
|
|
|
import unittest |
2
|
|
|
|
3
|
|
|
import numpy as np |
4
|
|
|
import pandas as pd |
5
|
|
|
|
6
|
|
|
from klib.utils import ( |
7
|
|
|
_corr_selector, |
8
|
|
|
_drop_duplicates, |
9
|
|
|
_missing_vals, |
10
|
|
|
_validate_input_bool, |
11
|
|
|
_validate_input_int, |
12
|
|
|
_validate_input_range, |
13
|
|
|
_validate_input_smaller, |
14
|
|
|
_validate_input_sum_larger, |
15
|
|
|
_validate_input_sum_smaller, |
16
|
|
|
) |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
class Test__corr_selector(unittest.TestCase): |
20
|
|
|
@classmethod |
21
|
|
|
def setUpClass(cls): |
22
|
|
|
cls.df_data_corr = pd.DataFrame( |
23
|
|
|
[ |
24
|
|
|
[1, 7, 2, 2, 4, 7], |
25
|
|
|
[3, 8, 3, 3, 7, 1], |
26
|
|
|
[5, 7, 9, 5, 1, 4], |
27
|
|
|
[1, 7, 8, 6, 1, 8], |
28
|
|
|
[1, 7, 5, 6, 2, 6], |
29
|
|
|
[2, 7, 3, 3, 5, 3], |
30
|
|
|
] |
31
|
|
|
) |
32
|
|
|
|
33
|
|
|
cls.target = pd.Series([1, 2, 4, 7, 4, 2]) |
34
|
|
|
|
35
|
|
|
def test__corr_selector_matrix(self): |
36
|
|
|
self.assertEqual(_corr_selector(self.df_data_corr.corr()).shape, (6, 6)) |
37
|
|
|
self.assertEqual( |
38
|
|
|
_corr_selector(self.df_data_corr.corr(), split="pos").isna().sum().sum(), 18 |
39
|
|
|
) |
40
|
|
|
self.assertEqual( |
41
|
|
|
_corr_selector(self.df_data_corr.corr(), split="pos", threshold=0.5) |
42
|
|
|
.isna() |
43
|
|
|
.sum() |
44
|
|
|
.sum(), |
45
|
|
|
26, |
46
|
|
|
) |
47
|
|
|
self.assertEqual( |
48
|
|
|
_corr_selector(self.df_data_corr.corr(), split="neg", threshold=-0.75) |
49
|
|
|
.isna() |
50
|
|
|
.sum() |
51
|
|
|
.sum(), |
52
|
|
|
32, |
53
|
|
|
) |
54
|
|
|
self.assertEqual( |
55
|
|
|
_corr_selector(self.df_data_corr.corr(), split="high", threshold=0.15) |
56
|
|
|
.isna() |
57
|
|
|
.sum() |
58
|
|
|
.sum(), |
59
|
|
|
4, |
60
|
|
|
) |
61
|
|
|
self.assertEqual( |
62
|
|
|
_corr_selector(self.df_data_corr.corr(), split="low", threshold=0.85) |
63
|
|
|
.isna() |
64
|
|
|
.sum() |
65
|
|
|
.sum(), |
66
|
|
|
6, |
67
|
|
|
) |
68
|
|
|
|
69
|
|
|
def test__corr_selector_label(self): |
70
|
|
|
self.assertEqual( |
71
|
|
|
_corr_selector(self.df_data_corr.corrwith(self.target)).shape, (6,) |
72
|
|
|
) |
73
|
|
|
self.assertEqual( |
74
|
|
|
_corr_selector(self.df_data_corr.corrwith(self.target), split="pos") |
75
|
|
|
.isna() |
76
|
|
|
.sum(), |
77
|
|
|
3, |
78
|
|
|
) |
79
|
|
|
self.assertEqual( |
80
|
|
|
_corr_selector( |
81
|
|
|
self.df_data_corr.corrwith(self.target), split="pos", threshold=0.8 |
82
|
|
|
) |
83
|
|
|
.isna() |
84
|
|
|
.sum(), |
85
|
|
|
4, |
86
|
|
|
) |
87
|
|
|
self.assertEqual( |
88
|
|
|
_corr_selector( |
89
|
|
|
self.df_data_corr.corrwith(self.target), split="neg", threshold=-0.7 |
90
|
|
|
) |
91
|
|
|
.isna() |
92
|
|
|
.sum(), |
93
|
|
|
5, |
94
|
|
|
) |
95
|
|
|
self.assertEqual( |
96
|
|
|
_corr_selector( |
97
|
|
|
self.df_data_corr.corrwith(self.target), split="high", threshold=0.2 |
98
|
|
|
) |
99
|
|
|
.isna() |
100
|
|
|
.sum(), |
101
|
|
|
1, |
102
|
|
|
) |
103
|
|
|
self.assertEqual( |
104
|
|
|
_corr_selector( |
105
|
|
|
self.df_data_corr.corrwith(self.target), split="low", threshold=0.8 |
106
|
|
|
) |
107
|
|
|
.isna() |
108
|
|
|
.sum(), |
109
|
|
|
2, |
110
|
|
|
) |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
class Test__drop_duplicates(unittest.TestCase): |
114
|
|
|
@classmethod |
115
|
|
|
def setUpClass(cls: pd.DataFrame) -> pd.DataFrame: |
116
|
|
|
cls.data_dupl_df = pd.DataFrame( |
117
|
|
|
[ |
118
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
119
|
|
|
[1, 2, 3, 4], |
120
|
|
|
[1, 2, 3, 4], |
121
|
|
|
[1, 2, 3, 4], |
122
|
|
|
[2, 3, 4, 5], |
123
|
|
|
[1, 2, 3, pd.NA], |
124
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
125
|
|
|
] |
126
|
|
|
) |
127
|
|
|
|
128
|
|
|
def test__drop_dupl(self): |
129
|
|
|
# Test dropping of duplicate rows |
130
|
|
|
self.assertAlmostEqual(_drop_duplicates(self.data_dupl_df)[0].shape, (4, 4)) |
131
|
|
|
# Test if the resulting DataFrame is equal to using the pandas method |
132
|
|
|
self.assertTrue( |
133
|
|
|
_drop_duplicates(self.data_dupl_df)[0].equals( |
134
|
|
|
self.data_dupl_df.drop_duplicates().reset_index(drop=True) |
135
|
|
|
) |
136
|
|
|
) |
137
|
|
|
# Test number of duplicates |
138
|
|
|
self.assertEqual(len(_drop_duplicates(self.data_dupl_df)[1]), 3) |
139
|
|
|
|
140
|
|
|
|
141
|
|
|
class Test__missing_vals(unittest.TestCase): |
142
|
|
|
@classmethod |
143
|
|
|
def setUpClass(cls): |
144
|
|
|
cls.data_mv_list = [ |
145
|
|
|
[1, np.nan, 3, 4], |
146
|
|
|
[None, 4, 5, None], |
147
|
|
|
["a", "b", pd.NA, "d"], |
148
|
|
|
[True, False, 7, pd.NaT], |
149
|
|
|
] |
150
|
|
|
|
151
|
|
|
cls.data_mv_df = pd.DataFrame(cls.data_mv_list) |
152
|
|
|
|
153
|
|
|
cls.data_mv_array = np.array(cls.data_mv_list) |
154
|
|
|
|
155
|
|
|
def test_mv_total(self): |
156
|
|
|
# Test total missing values |
157
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_df)["mv_total"], 5) |
158
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_array)["mv_total"], 5) |
159
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_list)["mv_total"], 5) |
160
|
|
|
|
161
|
|
|
def test_mv_rows(self): |
162
|
|
|
# Test missing values for each row |
163
|
|
|
expected_results = [1, 2, 1, 1] |
164
|
|
|
for i, result in enumerate(expected_results): |
165
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_df)["mv_rows"][i], result) |
166
|
|
|
|
167
|
|
|
def test_mv_cols(self): |
168
|
|
|
# Test missing values for each column |
169
|
|
|
expected_results = [1, 1, 1, 2] |
170
|
|
|
for i, result in enumerate(expected_results): |
171
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_df)["mv_cols"][i], result) |
172
|
|
|
|
173
|
|
|
def test_mv_rows_ratio(self): |
174
|
|
|
# Test missing values ratio for each row |
175
|
|
|
expected_results = [0.25, 0.5, 0.25, 0.25] |
176
|
|
|
for i, result in enumerate(expected_results): |
177
|
|
|
self.assertAlmostEqual( |
178
|
|
|
_missing_vals(self.data_mv_df)["mv_rows_ratio"][i], result |
179
|
|
|
) |
180
|
|
|
|
181
|
|
|
# Test if missing value ratio is between 0 and 1 |
182
|
|
|
for i, _ in enumerate(self.data_mv_df): |
183
|
|
|
self.assertTrue( |
184
|
|
|
0 <= _missing_vals(self.data_mv_df)["mv_rows_ratio"][i] <= 1 |
185
|
|
|
) |
186
|
|
|
|
187
|
|
|
def test_mv_cols_ratio(self): |
188
|
|
|
# Test missing values ratio for each column |
189
|
|
|
expected_results = [1 / 4, 0.25, 0.25, 0.5] |
190
|
|
|
for i, result in enumerate(expected_results): |
191
|
|
|
self.assertAlmostEqual( |
192
|
|
|
_missing_vals(self.data_mv_df)["mv_cols_ratio"][i], result |
193
|
|
|
) |
194
|
|
|
|
195
|
|
|
# Test if missing value ratio is between 0 and 1 |
196
|
|
|
for i, _ in enumerate(self.data_mv_df): |
197
|
|
|
self.assertTrue( |
198
|
|
|
0 <= _missing_vals(self.data_mv_df)["mv_cols_ratio"][i] <= 1 |
199
|
|
|
) |
200
|
|
|
|
201
|
|
|
|
202
|
|
|
class Test__validate_input(unittest.TestCase): |
203
|
|
|
def test__validate_input_bool(self): |
204
|
|
|
# Raises an exception if the input is not boolean |
205
|
|
|
with self.assertRaises(TypeError): |
206
|
|
|
_validate_input_bool("True", None) |
207
|
|
|
with self.assertRaises(TypeError): |
208
|
|
|
_validate_input_bool(None, None) |
209
|
|
|
with self.assertRaises(TypeError): |
210
|
|
|
_validate_input_bool(1, None) |
211
|
|
|
|
212
|
|
|
def test__validate_input_int(self): |
213
|
|
|
# Raises an exception if the input is not an integer |
214
|
|
|
with self.assertRaises(TypeError): |
215
|
|
|
_validate_input_int(1.1, None) |
216
|
|
|
with self.assertRaises(TypeError): |
217
|
|
|
_validate_input_int([1], None) |
218
|
|
|
with self.assertRaises(TypeError): |
219
|
|
|
_validate_input_int("1", None) |
220
|
|
|
|
221
|
|
|
def test__validate_input_smaller(self): |
222
|
|
|
# Raises an exception if the first value is larger than the second |
223
|
|
|
with self.assertRaises(ValueError): |
224
|
|
|
_validate_input_smaller(0.3, 0.2, None) |
225
|
|
|
with self.assertRaises(ValueError): |
226
|
|
|
_validate_input_smaller(3, 2, None) |
227
|
|
|
with self.assertRaises(ValueError): |
228
|
|
|
_validate_input_smaller(5, -3, None) |
229
|
|
|
|
230
|
|
|
def test__validate_input_range(self): |
231
|
|
|
with self.assertRaises(ValueError): |
232
|
|
|
_validate_input_range(-0.1, "value -0.1", 0, 1) |
233
|
|
|
|
234
|
|
|
with self.assertRaises(ValueError): |
235
|
|
|
_validate_input_range(1.1, "value 1.1", 0, 1) |
236
|
|
|
|
237
|
|
|
with self.assertRaises(TypeError): |
238
|
|
|
_validate_input_range("1", "value string", 0, 1) |
239
|
|
|
|
240
|
|
|
def test__validate_input_sum_smaller(self): |
241
|
|
|
with self.assertRaises(ValueError): |
242
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 1.01) |
243
|
|
|
with self.assertRaises(ValueError): |
244
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 0.3, 0.2, 0.4, 0.5) |
245
|
|
|
with self.assertRaises(ValueError): |
246
|
|
|
_validate_input_sum_smaller(-1, "Test Sum <= -1", -0.2, -0.7) |
247
|
|
|
with self.assertRaises(ValueError): |
248
|
|
|
_validate_input_sum_smaller(10, "Test Sum <= 10", 20, -11, 2) |
249
|
|
|
|
250
|
|
|
def test__validate_input_sum_larger(self): |
251
|
|
|
with self.assertRaises(ValueError): |
252
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.99) |
253
|
|
|
with self.assertRaises(ValueError): |
254
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.9, 0.05) |
255
|
|
|
with self.assertRaises(ValueError): |
256
|
|
|
_validate_input_sum_larger(-2, "Test Sum >=-2", -3) |
257
|
|
|
with self.assertRaises(ValueError): |
258
|
|
|
_validate_input_sum_larger(7, "Test Sum >= 7", 1, 2, 3) |
259
|
|
|
|