|
1
|
|
|
import unittest |
|
2
|
|
|
|
|
3
|
|
|
import numpy as np |
|
4
|
|
|
import pandas as pd |
|
5
|
|
|
|
|
6
|
|
|
from klib.utils import ( |
|
7
|
|
|
_corr_selector, |
|
8
|
|
|
_drop_duplicates, |
|
9
|
|
|
_missing_vals, |
|
10
|
|
|
_validate_input_bool, |
|
11
|
|
|
_validate_input_int, |
|
12
|
|
|
_validate_input_range, |
|
13
|
|
|
_validate_input_smaller, |
|
14
|
|
|
_validate_input_sum_larger, |
|
15
|
|
|
_validate_input_sum_smaller, |
|
16
|
|
|
) |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class Test__corr_selector(unittest.TestCase): |
|
20
|
|
|
@classmethod |
|
21
|
|
|
def setUpClass(cls): |
|
22
|
|
|
cls.df_data_corr = pd.DataFrame( |
|
23
|
|
|
[ |
|
24
|
|
|
[1, 7, 2, 2, 4, 7], |
|
25
|
|
|
[3, 8, 3, 3, 7, 1], |
|
26
|
|
|
[5, 7, 9, 5, 1, 4], |
|
27
|
|
|
[1, 7, 8, 6, 1, 8], |
|
28
|
|
|
[1, 7, 5, 6, 2, 6], |
|
29
|
|
|
[2, 7, 3, 3, 5, 3], |
|
30
|
|
|
] |
|
31
|
|
|
) |
|
32
|
|
|
|
|
33
|
|
|
cls.target = pd.Series([1, 2, 4, 7, 4, 2]) |
|
34
|
|
|
|
|
35
|
|
|
def test__corr_selector_matrix(self): |
|
36
|
|
|
self.assertEqual(_corr_selector(self.df_data_corr.corr()).shape, (6, 6)) |
|
37
|
|
|
self.assertEqual( |
|
38
|
|
|
_corr_selector(self.df_data_corr.corr(), split="pos").isna().sum().sum(), 18 |
|
39
|
|
|
) |
|
40
|
|
|
self.assertEqual( |
|
41
|
|
|
_corr_selector(self.df_data_corr.corr(), split="pos", threshold=0.5) |
|
42
|
|
|
.isna() |
|
43
|
|
|
.sum() |
|
44
|
|
|
.sum(), |
|
45
|
|
|
26, |
|
46
|
|
|
) |
|
47
|
|
|
self.assertEqual( |
|
48
|
|
|
_corr_selector(self.df_data_corr.corr(), split="neg", threshold=-0.75) |
|
49
|
|
|
.isna() |
|
50
|
|
|
.sum() |
|
51
|
|
|
.sum(), |
|
52
|
|
|
32, |
|
53
|
|
|
) |
|
54
|
|
|
self.assertEqual( |
|
55
|
|
|
_corr_selector(self.df_data_corr.corr(), split="high", threshold=0.15) |
|
56
|
|
|
.isna() |
|
57
|
|
|
.sum() |
|
58
|
|
|
.sum(), |
|
59
|
|
|
4, |
|
60
|
|
|
) |
|
61
|
|
|
self.assertEqual( |
|
62
|
|
|
_corr_selector(self.df_data_corr.corr(), split="low", threshold=0.85) |
|
63
|
|
|
.isna() |
|
64
|
|
|
.sum() |
|
65
|
|
|
.sum(), |
|
66
|
|
|
6, |
|
67
|
|
|
) |
|
68
|
|
|
|
|
69
|
|
|
def test__corr_selector_label(self): |
|
70
|
|
|
self.assertEqual( |
|
71
|
|
|
_corr_selector(self.df_data_corr.corrwith(self.target)).shape, (6,) |
|
72
|
|
|
) |
|
73
|
|
|
self.assertEqual( |
|
74
|
|
|
_corr_selector(self.df_data_corr.corrwith(self.target), split="pos") |
|
75
|
|
|
.isna() |
|
76
|
|
|
.sum(), |
|
77
|
|
|
3, |
|
78
|
|
|
) |
|
79
|
|
|
self.assertEqual( |
|
80
|
|
|
_corr_selector( |
|
81
|
|
|
self.df_data_corr.corrwith(self.target), split="pos", threshold=0.8 |
|
82
|
|
|
) |
|
83
|
|
|
.isna() |
|
84
|
|
|
.sum(), |
|
85
|
|
|
4, |
|
86
|
|
|
) |
|
87
|
|
|
self.assertEqual( |
|
88
|
|
|
_corr_selector( |
|
89
|
|
|
self.df_data_corr.corrwith(self.target), split="neg", threshold=-0.7 |
|
90
|
|
|
) |
|
91
|
|
|
.isna() |
|
92
|
|
|
.sum(), |
|
93
|
|
|
5, |
|
94
|
|
|
) |
|
95
|
|
|
self.assertEqual( |
|
96
|
|
|
_corr_selector( |
|
97
|
|
|
self.df_data_corr.corrwith(self.target), split="high", threshold=0.2 |
|
98
|
|
|
) |
|
99
|
|
|
.isna() |
|
100
|
|
|
.sum(), |
|
101
|
|
|
1, |
|
102
|
|
|
) |
|
103
|
|
|
self.assertEqual( |
|
104
|
|
|
_corr_selector( |
|
105
|
|
|
self.df_data_corr.corrwith(self.target), split="low", threshold=0.8 |
|
106
|
|
|
) |
|
107
|
|
|
.isna() |
|
108
|
|
|
.sum(), |
|
109
|
|
|
2, |
|
110
|
|
|
) |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
class Test__drop_duplicates(unittest.TestCase): |
|
114
|
|
|
@classmethod |
|
115
|
|
|
def setUpClass(cls: pd.DataFrame) -> pd.DataFrame: |
|
116
|
|
|
cls.data_dupl_df = pd.DataFrame( |
|
117
|
|
|
[ |
|
118
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
|
119
|
|
|
[1, 2, 3, 4], |
|
120
|
|
|
[1, 2, 3, 4], |
|
121
|
|
|
[1, 2, 3, 4], |
|
122
|
|
|
[2, 3, 4, 5], |
|
123
|
|
|
[1, 2, 3, pd.NA], |
|
124
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
|
125
|
|
|
] |
|
126
|
|
|
) |
|
127
|
|
|
|
|
128
|
|
|
def test__drop_dupl(self): |
|
129
|
|
|
# Test dropping of duplicate rows |
|
130
|
|
|
self.assertAlmostEqual(_drop_duplicates(self.data_dupl_df)[0].shape, (4, 4)) |
|
131
|
|
|
# Test if the resulting DataFrame is equal to using the pandas method |
|
132
|
|
|
self.assertTrue( |
|
133
|
|
|
_drop_duplicates(self.data_dupl_df)[0].equals( |
|
134
|
|
|
self.data_dupl_df.drop_duplicates().reset_index(drop=True) |
|
135
|
|
|
) |
|
136
|
|
|
) |
|
137
|
|
|
# Test number of duplicates |
|
138
|
|
|
self.assertEqual(len(_drop_duplicates(self.data_dupl_df)[1]), 3) |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
class Test__missing_vals(unittest.TestCase): |
|
142
|
|
|
@classmethod |
|
143
|
|
|
def setUpClass(cls): |
|
144
|
|
|
cls.data_mv_list = [ |
|
145
|
|
|
[1, np.nan, 3, 4], |
|
146
|
|
|
[None, 4, 5, None], |
|
147
|
|
|
["a", "b", pd.NA, "d"], |
|
148
|
|
|
[True, False, 7, pd.NaT], |
|
149
|
|
|
] |
|
150
|
|
|
|
|
151
|
|
|
cls.data_mv_df = pd.DataFrame(cls.data_mv_list) |
|
152
|
|
|
|
|
153
|
|
|
cls.data_mv_array = np.array(cls.data_mv_list) |
|
154
|
|
|
|
|
155
|
|
|
def test_mv_total(self): |
|
156
|
|
|
# Test total missing values |
|
157
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_df)["mv_total"], 5) |
|
158
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_array)["mv_total"], 5) |
|
159
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_list)["mv_total"], 5) |
|
160
|
|
|
|
|
161
|
|
|
def test_mv_rows(self): |
|
162
|
|
|
# Test missing values for each row |
|
163
|
|
|
expected_results = [1, 2, 1, 1] |
|
164
|
|
|
for i, result in enumerate(expected_results): |
|
165
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_df)["mv_rows"][i], result) |
|
166
|
|
|
|
|
167
|
|
|
def test_mv_cols(self): |
|
168
|
|
|
# Test missing values for each column |
|
169
|
|
|
expected_results = [1, 1, 1, 2] |
|
170
|
|
|
for i, result in enumerate(expected_results): |
|
171
|
|
|
self.assertAlmostEqual(_missing_vals(self.data_mv_df)["mv_cols"][i], result) |
|
172
|
|
|
|
|
173
|
|
|
def test_mv_rows_ratio(self): |
|
174
|
|
|
# Test missing values ratio for each row |
|
175
|
|
|
expected_results = [0.25, 0.5, 0.25, 0.25] |
|
176
|
|
|
for i, result in enumerate(expected_results): |
|
177
|
|
|
self.assertAlmostEqual( |
|
178
|
|
|
_missing_vals(self.data_mv_df)["mv_rows_ratio"][i], result |
|
179
|
|
|
) |
|
180
|
|
|
|
|
181
|
|
|
# Test if missing value ratio is between 0 and 1 |
|
182
|
|
|
for i, _ in enumerate(self.data_mv_df): |
|
183
|
|
|
self.assertTrue( |
|
184
|
|
|
0 <= _missing_vals(self.data_mv_df)["mv_rows_ratio"][i] <= 1 |
|
185
|
|
|
) |
|
186
|
|
|
|
|
187
|
|
|
def test_mv_cols_ratio(self): |
|
188
|
|
|
# Test missing values ratio for each column |
|
189
|
|
|
expected_results = [1 / 4, 0.25, 0.25, 0.5] |
|
190
|
|
|
for i, result in enumerate(expected_results): |
|
191
|
|
|
self.assertAlmostEqual( |
|
192
|
|
|
_missing_vals(self.data_mv_df)["mv_cols_ratio"][i], result |
|
193
|
|
|
) |
|
194
|
|
|
|
|
195
|
|
|
# Test if missing value ratio is between 0 and 1 |
|
196
|
|
|
for i, _ in enumerate(self.data_mv_df): |
|
197
|
|
|
self.assertTrue( |
|
198
|
|
|
0 <= _missing_vals(self.data_mv_df)["mv_cols_ratio"][i] <= 1 |
|
199
|
|
|
) |
|
200
|
|
|
|
|
201
|
|
|
|
|
202
|
|
|
class Test__validate_input(unittest.TestCase): |
|
203
|
|
|
def test__validate_input_bool(self): |
|
204
|
|
|
# Raises an exception if the input is not boolean |
|
205
|
|
|
with self.assertRaises(TypeError): |
|
206
|
|
|
_validate_input_bool("True", None) |
|
207
|
|
|
with self.assertRaises(TypeError): |
|
208
|
|
|
_validate_input_bool(None, None) |
|
209
|
|
|
with self.assertRaises(TypeError): |
|
210
|
|
|
_validate_input_bool(1, None) |
|
211
|
|
|
|
|
212
|
|
|
def test__validate_input_int(self): |
|
213
|
|
|
# Raises an exception if the input is not an integer |
|
214
|
|
|
with self.assertRaises(TypeError): |
|
215
|
|
|
_validate_input_int(1.1, None) |
|
216
|
|
|
with self.assertRaises(TypeError): |
|
217
|
|
|
_validate_input_int([1], None) |
|
218
|
|
|
with self.assertRaises(TypeError): |
|
219
|
|
|
_validate_input_int("1", None) |
|
220
|
|
|
|
|
221
|
|
|
def test__validate_input_smaller(self): |
|
222
|
|
|
# Raises an exception if the first value is larger than the second |
|
223
|
|
|
with self.assertRaises(ValueError): |
|
224
|
|
|
_validate_input_smaller(0.3, 0.2, None) |
|
225
|
|
|
with self.assertRaises(ValueError): |
|
226
|
|
|
_validate_input_smaller(3, 2, None) |
|
227
|
|
|
with self.assertRaises(ValueError): |
|
228
|
|
|
_validate_input_smaller(5, -3, None) |
|
229
|
|
|
|
|
230
|
|
|
def test__validate_input_range(self): |
|
231
|
|
|
with self.assertRaises(ValueError): |
|
232
|
|
|
_validate_input_range(-0.1, "value -0.1", 0, 1) |
|
233
|
|
|
|
|
234
|
|
|
with self.assertRaises(ValueError): |
|
235
|
|
|
_validate_input_range(1.1, "value 1.1", 0, 1) |
|
236
|
|
|
|
|
237
|
|
|
with self.assertRaises(TypeError): |
|
238
|
|
|
_validate_input_range("1", "value string", 0, 1) |
|
239
|
|
|
|
|
240
|
|
|
def test__validate_input_sum_smaller(self): |
|
241
|
|
|
with self.assertRaises(ValueError): |
|
242
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 1.01) |
|
243
|
|
|
with self.assertRaises(ValueError): |
|
244
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 0.3, 0.2, 0.4, 0.5) |
|
245
|
|
|
with self.assertRaises(ValueError): |
|
246
|
|
|
_validate_input_sum_smaller(-1, "Test Sum <= -1", -0.2, -0.7) |
|
247
|
|
|
with self.assertRaises(ValueError): |
|
248
|
|
|
_validate_input_sum_smaller(10, "Test Sum <= 10", 20, -11, 2) |
|
249
|
|
|
|
|
250
|
|
|
def test__validate_input_sum_larger(self): |
|
251
|
|
|
with self.assertRaises(ValueError): |
|
252
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.99) |
|
253
|
|
|
with self.assertRaises(ValueError): |
|
254
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.9, 0.05) |
|
255
|
|
|
with self.assertRaises(ValueError): |
|
256
|
|
|
_validate_input_sum_larger(-2, "Test Sum >=-2", -3) |
|
257
|
|
|
with self.assertRaises(ValueError): |
|
258
|
|
|
_validate_input_sum_larger(7, "Test Sum >= 7", 1, 2, 3) |
|
259
|
|
|
|