|
1
|
|
|
import unittest |
|
2
|
|
|
|
|
3
|
|
|
import numpy as np |
|
4
|
|
|
import pandas as pd |
|
5
|
|
|
import pytest |
|
6
|
|
|
|
|
7
|
|
|
from klib.utils import _corr_selector |
|
8
|
|
|
from klib.utils import _drop_duplicates |
|
9
|
|
|
from klib.utils import _missing_vals |
|
10
|
|
|
from klib.utils import _validate_input_bool |
|
11
|
|
|
from klib.utils import _validate_input_int |
|
12
|
|
|
from klib.utils import _validate_input_num_data |
|
13
|
|
|
from klib.utils import _validate_input_range |
|
14
|
|
|
from klib.utils import _validate_input_smaller |
|
15
|
|
|
from klib.utils import _validate_input_sum_larger |
|
16
|
|
|
from klib.utils import _validate_input_sum_smaller |
|
17
|
|
|
|
|
18
|
|
|
|
|
19
|
|
|
class Test__corr_selector(unittest.TestCase): |
|
20
|
|
|
@classmethod |
|
21
|
|
|
def setUpClass(cls) -> None: |
|
22
|
|
|
cls.df_data_corr = pd.DataFrame( |
|
23
|
|
|
[ |
|
24
|
|
|
[1, 7, 2, 2, 4, 7], |
|
25
|
|
|
[3, 8, 3, 3, 7, 1], |
|
26
|
|
|
[5, 7, 9, 5, 1, 4], |
|
27
|
|
|
[1, 7, 8, 6, 1, 8], |
|
28
|
|
|
[1, 7, 5, 6, 2, 6], |
|
29
|
|
|
[2, 7, 3, 3, 5, 3], |
|
30
|
|
|
], |
|
31
|
|
|
) |
|
32
|
|
|
|
|
33
|
|
|
cls.target = pd.Series([1, 2, 4, 7, 4, 2]) |
|
34
|
|
|
|
|
35
|
|
|
def test__corr_selector_matrix(self): |
|
36
|
|
|
assert _corr_selector(self.df_data_corr.corr()).shape == (6, 6) |
|
37
|
|
|
assert _corr_selector(self.df_data_corr.corr(), split="pos").isna().sum().sum() == 18 |
|
38
|
|
|
assert ( |
|
39
|
|
|
_corr_selector(self.df_data_corr.corr(), split="pos", threshold=0.5).isna().sum().sum() |
|
40
|
|
|
== 26 |
|
41
|
|
|
) |
|
42
|
|
|
assert ( |
|
43
|
|
|
_corr_selector(self.df_data_corr.corr(), split="neg", threshold=-0.75) |
|
44
|
|
|
.isna() |
|
45
|
|
|
.sum() |
|
46
|
|
|
.sum() |
|
47
|
|
|
== 32 |
|
48
|
|
|
) |
|
49
|
|
|
assert ( |
|
50
|
|
|
_corr_selector(self.df_data_corr.corr(), split="high", threshold=0.15) |
|
51
|
|
|
.isna() |
|
52
|
|
|
.sum() |
|
53
|
|
|
.sum() |
|
54
|
|
|
== 4 |
|
55
|
|
|
) |
|
56
|
|
|
assert ( |
|
57
|
|
|
_corr_selector(self.df_data_corr.corr(), split="low", threshold=0.85).isna().sum().sum() |
|
58
|
|
|
== 6 |
|
59
|
|
|
) |
|
60
|
|
|
|
|
61
|
|
|
def test__corr_selector_label(self): |
|
62
|
|
|
assert _corr_selector(self.df_data_corr.corrwith(self.target)).shape == (6,) |
|
63
|
|
|
assert ( |
|
64
|
|
|
_corr_selector(self.df_data_corr.corrwith(self.target), split="pos").isna().sum() == 3 |
|
65
|
|
|
) |
|
66
|
|
|
assert ( |
|
67
|
|
|
_corr_selector( |
|
68
|
|
|
self.df_data_corr.corrwith(self.target), |
|
69
|
|
|
split="pos", |
|
70
|
|
|
threshold=0.8, |
|
71
|
|
|
) |
|
72
|
|
|
.isna() |
|
73
|
|
|
.sum() |
|
74
|
|
|
== 4 |
|
75
|
|
|
) |
|
76
|
|
|
assert ( |
|
77
|
|
|
_corr_selector( |
|
78
|
|
|
self.df_data_corr.corrwith(self.target), |
|
79
|
|
|
split="neg", |
|
80
|
|
|
threshold=-0.7, |
|
81
|
|
|
) |
|
82
|
|
|
.isna() |
|
83
|
|
|
.sum() |
|
84
|
|
|
== 5 |
|
85
|
|
|
) |
|
86
|
|
|
assert ( |
|
87
|
|
|
_corr_selector( |
|
88
|
|
|
self.df_data_corr.corrwith(self.target), |
|
89
|
|
|
split="high", |
|
90
|
|
|
threshold=0.2, |
|
91
|
|
|
) |
|
92
|
|
|
.isna() |
|
93
|
|
|
.sum() |
|
94
|
|
|
== 1 |
|
95
|
|
|
) |
|
96
|
|
|
assert ( |
|
97
|
|
|
_corr_selector( |
|
98
|
|
|
self.df_data_corr.corrwith(self.target), |
|
99
|
|
|
split="low", |
|
100
|
|
|
threshold=0.8, |
|
101
|
|
|
) |
|
102
|
|
|
.isna() |
|
103
|
|
|
.sum() |
|
104
|
|
|
== 2 |
|
105
|
|
|
) |
|
106
|
|
|
|
|
107
|
|
|
|
|
108
|
|
|
class Test__drop_duplicates(unittest.TestCase): |
|
109
|
|
|
@classmethod |
|
110
|
|
|
def setUpClass(cls) -> None: |
|
111
|
|
|
cls.data_dupl_df = pd.DataFrame( |
|
112
|
|
|
[ |
|
113
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
|
114
|
|
|
[1, 2, 3, 4], |
|
115
|
|
|
[1, 2, 3, 4], |
|
116
|
|
|
[1, 2, 3, 4], |
|
117
|
|
|
[2, 3, 4, 5], |
|
118
|
|
|
[1, 2, 3, pd.NA], |
|
119
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
|
120
|
|
|
], |
|
121
|
|
|
) |
|
122
|
|
|
|
|
123
|
|
|
def test__drop_dupl(self) -> None: |
|
124
|
|
|
# Test dropping of duplicate rows |
|
125
|
|
|
assert _drop_duplicates(self.data_dupl_df)[0].shape == (4, 4) |
|
126
|
|
|
# Test if the resulting DataFrame is equal to using the pandas method |
|
127
|
|
|
assert _drop_duplicates(self.data_dupl_df)[0].equals( |
|
128
|
|
|
self.data_dupl_df.drop_duplicates().reset_index(drop=True), |
|
129
|
|
|
) |
|
130
|
|
|
# Test number of duplicates |
|
131
|
|
|
assert len(_drop_duplicates(self.data_dupl_df)[1]) == 3 |
|
132
|
|
|
|
|
133
|
|
|
|
|
134
|
|
|
class Test__missing_vals(unittest.TestCase): |
|
135
|
|
|
@classmethod |
|
136
|
|
|
def setUpClass(cls) -> None: |
|
137
|
|
|
cls.data_mv_list = [ |
|
138
|
|
|
[1, np.nan, 3, 4], |
|
139
|
|
|
[None, 4, 5, None], |
|
140
|
|
|
["a", "b", pd.NA, "d"], |
|
141
|
|
|
[True, False, 7, pd.NaT], |
|
142
|
|
|
] |
|
143
|
|
|
|
|
144
|
|
|
cls.data_mv_df = pd.DataFrame(cls.data_mv_list) |
|
145
|
|
|
|
|
146
|
|
|
cls.data_mv_array = np.array(cls.data_mv_list) |
|
147
|
|
|
|
|
148
|
|
|
def test_mv_total(self) -> None: |
|
149
|
|
|
# Test total missing values |
|
150
|
|
|
assert _missing_vals(self.data_mv_df)["mv_total"] == 5 |
|
151
|
|
|
assert _missing_vals(self.data_mv_array)["mv_total"] == 5 |
|
152
|
|
|
assert _missing_vals(self.data_mv_list)["mv_total"] == 5 |
|
153
|
|
|
|
|
154
|
|
|
def test_mv_rows(self) -> None: |
|
155
|
|
|
# Test missing values for each row |
|
156
|
|
|
expected_results = [1, 2, 1, 1] |
|
157
|
|
|
for i, result in enumerate(expected_results): |
|
158
|
|
|
assert _missing_vals(self.data_mv_df)["mv_rows"][i] == result |
|
159
|
|
|
|
|
160
|
|
|
def test_mv_cols(self) -> None: |
|
161
|
|
|
# Test missing values for each column |
|
162
|
|
|
expected_results = [1, 1, 1, 2] |
|
163
|
|
|
for i, result in enumerate(expected_results): |
|
164
|
|
|
assert _missing_vals(self.data_mv_df)["mv_cols"][i] == result |
|
165
|
|
|
|
|
166
|
|
|
def test_mv_rows_ratio(self) -> None: |
|
167
|
|
|
# Test missing values ratio for each row |
|
168
|
|
|
expected_results = [0.25, 0.5, 0.25, 0.25] |
|
169
|
|
|
for i, result in enumerate(expected_results): |
|
170
|
|
|
assert _missing_vals(self.data_mv_df)["mv_rows_ratio"][i] == result |
|
171
|
|
|
|
|
172
|
|
|
# Test if missing value ratio is between 0 and 1 |
|
173
|
|
|
for i, _ in enumerate(self.data_mv_df): |
|
174
|
|
|
assert 0 <= _missing_vals(self.data_mv_df)["mv_rows_ratio"][i] <= 1 |
|
175
|
|
|
|
|
176
|
|
|
def test_mv_cols_ratio(self) -> None: |
|
177
|
|
|
# Test missing values ratio for each column |
|
178
|
|
|
expected_results = [1 / 4, 0.25, 0.25, 0.5] |
|
179
|
|
|
for i, result in enumerate(expected_results): |
|
180
|
|
|
assert _missing_vals(self.data_mv_df)["mv_cols_ratio"][i] == result |
|
181
|
|
|
|
|
182
|
|
|
# Test if missing value ratio is between 0 and 1 |
|
183
|
|
|
for i, _ in enumerate(self.data_mv_df): |
|
184
|
|
|
assert 0 <= _missing_vals(self.data_mv_df)["mv_cols_ratio"][i] <= 1 |
|
185
|
|
|
|
|
186
|
|
|
|
|
187
|
|
|
class Test__validate_input(unittest.TestCase): |
|
188
|
|
|
def test__validate_input_bool(self) -> None: |
|
189
|
|
|
# Raises an exception if the input is not boolean |
|
190
|
|
|
with pytest.raises(TypeError): |
|
191
|
|
|
_validate_input_bool("True", "No description") |
|
192
|
|
|
with pytest.raises(TypeError): |
|
193
|
|
|
_validate_input_bool(None, "No description") |
|
194
|
|
|
with pytest.raises(TypeError): |
|
195
|
|
|
_validate_input_bool(1, "No description") |
|
196
|
|
|
|
|
197
|
|
|
def test__validate_input_int(self) -> None: |
|
198
|
|
|
# Raises an exception if the input is not an integer |
|
199
|
|
|
with pytest.raises(TypeError): |
|
200
|
|
|
_validate_input_int(1.1, "No description") |
|
201
|
|
|
with pytest.raises(TypeError): |
|
202
|
|
|
_validate_input_int([1], "No description") |
|
203
|
|
|
with pytest.raises(TypeError): |
|
204
|
|
|
_validate_input_int("1", "No description") |
|
205
|
|
|
|
|
206
|
|
|
def test__validate_input_smaller(self) -> None: |
|
207
|
|
|
# Raises an exception if the first value is larger than the second |
|
208
|
|
|
with pytest.raises(ValueError, match="The first input for 'some check' should"): |
|
209
|
|
|
_validate_input_smaller(0.3, 0.2, "some check") |
|
210
|
|
|
with pytest.raises(ValueError, match="The first input for 'some check' should"): |
|
211
|
|
|
_validate_input_smaller(3, 2, "some check") |
|
212
|
|
|
with pytest.raises(ValueError, match="The first input for 'some check' should"): |
|
213
|
|
|
_validate_input_smaller(5, -3, "some check") |
|
214
|
|
|
|
|
215
|
|
|
def test__validate_input_range(self) -> None: |
|
216
|
|
|
with pytest.raises( |
|
217
|
|
|
ValueError, |
|
218
|
|
|
match="'actual' = -0.1 but should be 0 <= 'actual' <= 1.", |
|
219
|
|
|
): |
|
220
|
|
|
_validate_input_range(-0.1, "actual", 0, 1) |
|
221
|
|
|
|
|
222
|
|
|
with pytest.raises( |
|
223
|
|
|
ValueError, |
|
224
|
|
|
match="'actual' = 1.1 but should be 0 <= 'actual' <= 1.", |
|
225
|
|
|
): |
|
226
|
|
|
_validate_input_range(1.1, "actual", 0, 1) |
|
227
|
|
|
|
|
228
|
|
|
with pytest.raises(TypeError): |
|
229
|
|
|
_validate_input_range("1", "value string", 0, 1) |
|
230
|
|
|
|
|
231
|
|
|
def test__validate_input_sum_smaller(self) -> None: |
|
232
|
|
|
with pytest.raises( |
|
233
|
|
|
ValueError, |
|
234
|
|
|
match="The sum of input values for 'Test Sum <= 1' should be less or equal to 1.", |
|
235
|
|
|
): |
|
236
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 1.01) |
|
237
|
|
|
with pytest.raises( |
|
238
|
|
|
ValueError, |
|
239
|
|
|
match="The sum of input values for 'Test Sum <= 1' should be less or equal to 1.", |
|
240
|
|
|
): |
|
241
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 0.3, 0.2, 0.4, 0.5) |
|
242
|
|
|
with pytest.raises( |
|
243
|
|
|
ValueError, |
|
244
|
|
|
match="The sum of input values for 'Test Sum <= -1' should be less or equal to -1.", |
|
245
|
|
|
): |
|
246
|
|
|
_validate_input_sum_smaller(-1, "Test Sum <= -1", -0.2, -0.7) |
|
247
|
|
|
with pytest.raises( |
|
248
|
|
|
ValueError, |
|
249
|
|
|
match="The sum of input values for 'Test Sum <= 10' should be less or equal to 10.", |
|
250
|
|
|
): |
|
251
|
|
|
_validate_input_sum_smaller(10, "Test Sum <= 10", 20, -11, 2) |
|
252
|
|
|
|
|
253
|
|
|
def test__validate_input_sum_larger(self) -> None: |
|
254
|
|
|
with pytest.raises( |
|
255
|
|
|
ValueError, |
|
256
|
|
|
match="The sum of input values for 'Test Sum >= 1' should be larger/equal to 1.", |
|
257
|
|
|
): |
|
258
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.99) |
|
259
|
|
|
with pytest.raises( |
|
260
|
|
|
ValueError, |
|
261
|
|
|
match="The sum of input values for 'Test Sum >= 1' should be larger/equal to 1.", |
|
262
|
|
|
): |
|
263
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.9, 0.05) |
|
264
|
|
|
with pytest.raises( |
|
265
|
|
|
ValueError, |
|
266
|
|
|
match="The sum of input values for 'Test Sum >=-2' should be larger/equal to -2.", |
|
267
|
|
|
): |
|
268
|
|
|
_validate_input_sum_larger(-2, "Test Sum >=-2", -3) |
|
269
|
|
|
with pytest.raises( |
|
270
|
|
|
ValueError, |
|
271
|
|
|
match="The sum of input values for 'Test Sum >= 7' should be larger/equal to 7.", |
|
272
|
|
|
): |
|
273
|
|
|
_validate_input_sum_larger(7, "Test Sum >= 7", 1, 2, 3) |
|
274
|
|
|
|
|
275
|
|
|
def test__validate_input_num_data(self) -> None: |
|
276
|
|
|
with pytest.raises(TypeError): |
|
277
|
|
|
_validate_input_num_data( |
|
278
|
|
|
pd.DataFrame({"col1": ["a", "b", "c"]}), |
|
279
|
|
|
"No description", |
|
280
|
|
|
) |
|
281
|
|
|
|
|
282
|
|
|
_validate_input_num_data( |
|
283
|
|
|
pd.DataFrame({"col1": [1, 2, 3]}), |
|
284
|
|
|
"No description", |
|
285
|
|
|
) # No exception |
|
286
|
|
|
|