1
|
|
|
import unittest |
2
|
|
|
|
3
|
|
|
import numpy as np |
4
|
|
|
import pandas as pd |
5
|
|
|
import pytest |
6
|
|
|
|
7
|
|
|
from klib.utils import _corr_selector |
8
|
|
|
from klib.utils import _drop_duplicates |
9
|
|
|
from klib.utils import _missing_vals |
10
|
|
|
from klib.utils import _validate_input_bool |
11
|
|
|
from klib.utils import _validate_input_int |
12
|
|
|
from klib.utils import _validate_input_num_data |
13
|
|
|
from klib.utils import _validate_input_range |
14
|
|
|
from klib.utils import _validate_input_smaller |
15
|
|
|
from klib.utils import _validate_input_sum_larger |
16
|
|
|
from klib.utils import _validate_input_sum_smaller |
17
|
|
|
|
18
|
|
|
|
19
|
|
|
class Test__corr_selector(unittest.TestCase): |
20
|
|
|
@classmethod |
21
|
|
|
def setUpClass(cls) -> None: |
22
|
|
|
cls.df_data_corr = pd.DataFrame( |
23
|
|
|
[ |
24
|
|
|
[1, 7, 2, 2, 4, 7], |
25
|
|
|
[3, 8, 3, 3, 7, 1], |
26
|
|
|
[5, 7, 9, 5, 1, 4], |
27
|
|
|
[1, 7, 8, 6, 1, 8], |
28
|
|
|
[1, 7, 5, 6, 2, 6], |
29
|
|
|
[2, 7, 3, 3, 5, 3], |
30
|
|
|
], |
31
|
|
|
) |
32
|
|
|
|
33
|
|
|
cls.target = pd.Series([1, 2, 4, 7, 4, 2]) |
34
|
|
|
|
35
|
|
|
def test__corr_selector_matrix(self): |
36
|
|
|
assert _corr_selector(self.df_data_corr.corr()).shape == (6, 6) |
37
|
|
|
assert _corr_selector(self.df_data_corr.corr(), split="pos").isna().sum().sum() == 18 |
38
|
|
|
assert ( |
39
|
|
|
_corr_selector(self.df_data_corr.corr(), split="pos", threshold=0.5).isna().sum().sum() |
40
|
|
|
== 26 |
41
|
|
|
) |
42
|
|
|
assert ( |
43
|
|
|
_corr_selector(self.df_data_corr.corr(), split="neg", threshold=-0.75) |
44
|
|
|
.isna() |
45
|
|
|
.sum() |
46
|
|
|
.sum() |
47
|
|
|
== 32 |
48
|
|
|
) |
49
|
|
|
assert ( |
50
|
|
|
_corr_selector(self.df_data_corr.corr(), split="high", threshold=0.15) |
51
|
|
|
.isna() |
52
|
|
|
.sum() |
53
|
|
|
.sum() |
54
|
|
|
== 4 |
55
|
|
|
) |
56
|
|
|
assert ( |
57
|
|
|
_corr_selector(self.df_data_corr.corr(), split="low", threshold=0.85).isna().sum().sum() |
58
|
|
|
== 6 |
59
|
|
|
) |
60
|
|
|
|
61
|
|
|
def test__corr_selector_label(self): |
62
|
|
|
assert _corr_selector(self.df_data_corr.corrwith(self.target)).shape == (6,) |
63
|
|
|
assert ( |
64
|
|
|
_corr_selector(self.df_data_corr.corrwith(self.target), split="pos").isna().sum() == 3 |
65
|
|
|
) |
66
|
|
|
assert ( |
67
|
|
|
_corr_selector( |
68
|
|
|
self.df_data_corr.corrwith(self.target), |
69
|
|
|
split="pos", |
70
|
|
|
threshold=0.8, |
71
|
|
|
) |
72
|
|
|
.isna() |
73
|
|
|
.sum() |
74
|
|
|
== 4 |
75
|
|
|
) |
76
|
|
|
assert ( |
77
|
|
|
_corr_selector( |
78
|
|
|
self.df_data_corr.corrwith(self.target), |
79
|
|
|
split="neg", |
80
|
|
|
threshold=-0.7, |
81
|
|
|
) |
82
|
|
|
.isna() |
83
|
|
|
.sum() |
84
|
|
|
== 5 |
85
|
|
|
) |
86
|
|
|
assert ( |
87
|
|
|
_corr_selector( |
88
|
|
|
self.df_data_corr.corrwith(self.target), |
89
|
|
|
split="high", |
90
|
|
|
threshold=0.2, |
91
|
|
|
) |
92
|
|
|
.isna() |
93
|
|
|
.sum() |
94
|
|
|
== 1 |
95
|
|
|
) |
96
|
|
|
assert ( |
97
|
|
|
_corr_selector( |
98
|
|
|
self.df_data_corr.corrwith(self.target), |
99
|
|
|
split="low", |
100
|
|
|
threshold=0.8, |
101
|
|
|
) |
102
|
|
|
.isna() |
103
|
|
|
.sum() |
104
|
|
|
== 2 |
105
|
|
|
) |
106
|
|
|
|
107
|
|
|
|
108
|
|
|
class Test__drop_duplicates(unittest.TestCase): |
109
|
|
|
@classmethod |
110
|
|
|
def setUpClass(cls) -> None: |
111
|
|
|
cls.data_dupl_df = pd.DataFrame( |
112
|
|
|
[ |
113
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
114
|
|
|
[1, 2, 3, 4], |
115
|
|
|
[1, 2, 3, 4], |
116
|
|
|
[1, 2, 3, 4], |
117
|
|
|
[2, 3, 4, 5], |
118
|
|
|
[1, 2, 3, pd.NA], |
119
|
|
|
[pd.NA, pd.NA, pd.NA, pd.NA], |
120
|
|
|
], |
121
|
|
|
) |
122
|
|
|
|
123
|
|
|
def test__drop_dupl(self) -> None: |
124
|
|
|
# Test dropping of duplicate rows |
125
|
|
|
assert _drop_duplicates(self.data_dupl_df)[0].shape == (4, 4) |
126
|
|
|
# Test if the resulting DataFrame is equal to using the pandas method |
127
|
|
|
assert _drop_duplicates(self.data_dupl_df)[0].equals( |
128
|
|
|
self.data_dupl_df.drop_duplicates().reset_index(drop=True), |
129
|
|
|
) |
130
|
|
|
# Test number of duplicates |
131
|
|
|
assert len(_drop_duplicates(self.data_dupl_df)[1]) == 3 |
132
|
|
|
|
133
|
|
|
|
134
|
|
|
class Test__missing_vals(unittest.TestCase): |
135
|
|
|
@classmethod |
136
|
|
|
def setUpClass(cls) -> None: |
137
|
|
|
cls.data_mv_list = [ |
138
|
|
|
[1, np.nan, 3, 4], |
139
|
|
|
[None, 4, 5, None], |
140
|
|
|
["a", "b", pd.NA, "d"], |
141
|
|
|
[True, False, 7, pd.NaT], |
142
|
|
|
] |
143
|
|
|
|
144
|
|
|
cls.data_mv_df = pd.DataFrame(cls.data_mv_list) |
145
|
|
|
|
146
|
|
|
cls.data_mv_array = np.array(cls.data_mv_list) |
147
|
|
|
|
148
|
|
|
def test_mv_total(self) -> None: |
149
|
|
|
# Test total missing values |
150
|
|
|
assert _missing_vals(self.data_mv_df)["mv_total"] == 5 |
151
|
|
|
assert _missing_vals(self.data_mv_array)["mv_total"] == 5 |
152
|
|
|
assert _missing_vals(self.data_mv_list)["mv_total"] == 5 |
153
|
|
|
|
154
|
|
|
def test_mv_rows(self) -> None: |
155
|
|
|
# Test missing values for each row |
156
|
|
|
expected_results = [1, 2, 1, 1] |
157
|
|
|
for i, result in enumerate(expected_results): |
158
|
|
|
assert _missing_vals(self.data_mv_df)["mv_rows"][i] == result |
159
|
|
|
|
160
|
|
|
def test_mv_cols(self) -> None: |
161
|
|
|
# Test missing values for each column |
162
|
|
|
expected_results = [1, 1, 1, 2] |
163
|
|
|
for i, result in enumerate(expected_results): |
164
|
|
|
assert _missing_vals(self.data_mv_df)["mv_cols"][i] == result |
165
|
|
|
|
166
|
|
|
def test_mv_rows_ratio(self) -> None: |
167
|
|
|
# Test missing values ratio for each row |
168
|
|
|
expected_results = [0.25, 0.5, 0.25, 0.25] |
169
|
|
|
for i, result in enumerate(expected_results): |
170
|
|
|
assert _missing_vals(self.data_mv_df)["mv_rows_ratio"][i] == result |
171
|
|
|
|
172
|
|
|
# Test if missing value ratio is between 0 and 1 |
173
|
|
|
for i, _ in enumerate(self.data_mv_df): |
174
|
|
|
assert 0 <= _missing_vals(self.data_mv_df)["mv_rows_ratio"][i] <= 1 |
175
|
|
|
|
176
|
|
|
def test_mv_cols_ratio(self) -> None: |
177
|
|
|
# Test missing values ratio for each column |
178
|
|
|
expected_results = [1 / 4, 0.25, 0.25, 0.5] |
179
|
|
|
for i, result in enumerate(expected_results): |
180
|
|
|
assert _missing_vals(self.data_mv_df)["mv_cols_ratio"][i] == result |
181
|
|
|
|
182
|
|
|
# Test if missing value ratio is between 0 and 1 |
183
|
|
|
for i, _ in enumerate(self.data_mv_df): |
184
|
|
|
assert 0 <= _missing_vals(self.data_mv_df)["mv_cols_ratio"][i] <= 1 |
185
|
|
|
|
186
|
|
|
|
187
|
|
|
class Test__validate_input(unittest.TestCase): |
188
|
|
|
def test__validate_input_bool(self) -> None: |
189
|
|
|
# Raises an exception if the input is not boolean |
190
|
|
|
with pytest.raises(TypeError): |
191
|
|
|
_validate_input_bool("True", "No description") |
192
|
|
|
with pytest.raises(TypeError): |
193
|
|
|
_validate_input_bool(None, "No description") |
194
|
|
|
with pytest.raises(TypeError): |
195
|
|
|
_validate_input_bool(1, "No description") |
196
|
|
|
|
197
|
|
|
def test__validate_input_int(self) -> None: |
198
|
|
|
# Raises an exception if the input is not an integer |
199
|
|
|
with pytest.raises(TypeError): |
200
|
|
|
_validate_input_int(1.1, "No description") |
201
|
|
|
with pytest.raises(TypeError): |
202
|
|
|
_validate_input_int([1], "No description") |
203
|
|
|
with pytest.raises(TypeError): |
204
|
|
|
_validate_input_int("1", "No description") |
205
|
|
|
|
206
|
|
|
def test__validate_input_smaller(self) -> None: |
207
|
|
|
# Raises an exception if the first value is larger than the second |
208
|
|
|
with pytest.raises(ValueError, match="The first input for 'some check' should"): |
209
|
|
|
_validate_input_smaller(0.3, 0.2, "some check") |
210
|
|
|
with pytest.raises(ValueError, match="The first input for 'some check' should"): |
211
|
|
|
_validate_input_smaller(3, 2, "some check") |
212
|
|
|
with pytest.raises(ValueError, match="The first input for 'some check' should"): |
213
|
|
|
_validate_input_smaller(5, -3, "some check") |
214
|
|
|
|
215
|
|
|
def test__validate_input_range(self) -> None: |
216
|
|
|
with pytest.raises( |
217
|
|
|
ValueError, |
218
|
|
|
match="'actual' = -0.1 but should be 0 <= 'actual' <= 1.", |
219
|
|
|
): |
220
|
|
|
_validate_input_range(-0.1, "actual", 0, 1) |
221
|
|
|
|
222
|
|
|
with pytest.raises( |
223
|
|
|
ValueError, |
224
|
|
|
match="'actual' = 1.1 but should be 0 <= 'actual' <= 1.", |
225
|
|
|
): |
226
|
|
|
_validate_input_range(1.1, "actual", 0, 1) |
227
|
|
|
|
228
|
|
|
with pytest.raises(TypeError): |
229
|
|
|
_validate_input_range("1", "value string", 0, 1) |
230
|
|
|
|
231
|
|
|
def test__validate_input_sum_smaller(self) -> None: |
232
|
|
|
with pytest.raises( |
233
|
|
|
ValueError, |
234
|
|
|
match="The sum of input values for 'Test Sum <= 1' should be less or equal to 1.", |
235
|
|
|
): |
236
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 1.01) |
237
|
|
|
with pytest.raises( |
238
|
|
|
ValueError, |
239
|
|
|
match="The sum of input values for 'Test Sum <= 1' should be less or equal to 1.", |
240
|
|
|
): |
241
|
|
|
_validate_input_sum_smaller(1, "Test Sum <= 1", 0.3, 0.2, 0.4, 0.5) |
242
|
|
|
with pytest.raises( |
243
|
|
|
ValueError, |
244
|
|
|
match="The sum of input values for 'Test Sum <= -1' should be less or equal to -1.", |
245
|
|
|
): |
246
|
|
|
_validate_input_sum_smaller(-1, "Test Sum <= -1", -0.2, -0.7) |
247
|
|
|
with pytest.raises( |
248
|
|
|
ValueError, |
249
|
|
|
match="The sum of input values for 'Test Sum <= 10' should be less or equal to 10.", |
250
|
|
|
): |
251
|
|
|
_validate_input_sum_smaller(10, "Test Sum <= 10", 20, -11, 2) |
252
|
|
|
|
253
|
|
|
def test__validate_input_sum_larger(self) -> None: |
254
|
|
|
with pytest.raises( |
255
|
|
|
ValueError, |
256
|
|
|
match="The sum of input values for 'Test Sum >= 1' should be larger/equal to 1.", |
257
|
|
|
): |
258
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.99) |
259
|
|
|
with pytest.raises( |
260
|
|
|
ValueError, |
261
|
|
|
match="The sum of input values for 'Test Sum >= 1' should be larger/equal to 1.", |
262
|
|
|
): |
263
|
|
|
_validate_input_sum_larger(1, "Test Sum >= 1", 0.9, 0.05) |
264
|
|
|
with pytest.raises( |
265
|
|
|
ValueError, |
266
|
|
|
match="The sum of input values for 'Test Sum >=-2' should be larger/equal to -2.", |
267
|
|
|
): |
268
|
|
|
_validate_input_sum_larger(-2, "Test Sum >=-2", -3) |
269
|
|
|
with pytest.raises( |
270
|
|
|
ValueError, |
271
|
|
|
match="The sum of input values for 'Test Sum >= 7' should be larger/equal to 7.", |
272
|
|
|
): |
273
|
|
|
_validate_input_sum_larger(7, "Test Sum >= 7", 1, 2, 3) |
274
|
|
|
|
275
|
|
|
def test__validate_input_num_data(self) -> None: |
276
|
|
|
with pytest.raises(TypeError): |
277
|
|
|
_validate_input_num_data( |
278
|
|
|
pd.DataFrame({"col1": ["a", "b", "c"]}), |
279
|
|
|
"No description", |
280
|
|
|
) |
281
|
|
|
|
282
|
|
|
_validate_input_num_data( |
283
|
|
|
pd.DataFrame({"col1": [1, 2, 3]}), |
284
|
|
|
"No description", |
285
|
|
|
) # No exception |
286
|
|
|
|