This project does not seem to handle request data directly as such no vulnerable execution paths were found.
include
, or for example
via PHP's auto-loading mechanism.
1 | <?php declare(strict_types=1); |
||
2 | |||
3 | namespace XoopsModules\Xhelp; |
||
4 | |||
5 | /* |
||
6 | ***** BEGIN LICENSE BLOCK ***** |
||
7 | This file is part of PHP Naive Bayesian Filter. |
||
8 | |||
9 | The Initial Developer of the Original Code is |
||
10 | Loic d'Anterroches [loic_at_xhtml.net]. |
||
11 | Portions created by the Initial Developer are Copyright (C) 2003 |
||
12 | the Initial Developer. All Rights Reserved. |
||
13 | |||
14 | Contributor(s): |
||
15 | See the source |
||
16 | |||
17 | PHP Naive Bayesian Filter is free software; you can redistribute it |
||
18 | and/or modify it under the terms of the GNU General Public License as |
||
19 | published by the Free Software Foundation; either version 2 of |
||
20 | the License, or (at your option) any later version. |
||
21 | |||
22 | PHP Naive Bayesian Filter is distributed in the hope that it will |
||
23 | be useful, but WITHOUT ANY WARRANTY; without even the implied |
||
24 | warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
||
25 | See the GNU General Public License for more details. |
||
26 | |||
27 | You should have received a copy of the GNU General Public License |
||
28 | along with Foobar; if not, write to the Free Software |
||
29 | Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
||
30 | |||
31 | Alternatively, the contents of this file may be used under the terms of |
||
32 | the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
||
33 | in which case the provisions of the LGPL are applicable instead |
||
34 | of those above. |
||
35 | |||
36 | ***** END LICENSE BLOCK ***** |
||
37 | */ |
||
38 | |||
39 | /** |
||
40 | * class NaiveBayesian |
||
41 | */ |
||
42 | class NaiveBayesian |
||
43 | { |
||
44 | /** min token length for it to be taken into consideration */ |
||
45 | public $min_token_length = 3; |
||
46 | /** max token length for it to be taken into consideration */ |
||
47 | public $max_token_length = 15; |
||
48 | /** list of token to ignore |
||
49 | * @see getIgnoreList() |
||
50 | */ |
||
51 | public $ignore_list = []; |
||
52 | /** storage object |
||
53 | * @see class NaiveBayesianStorage |
||
54 | */ |
||
55 | public $nbs; |
||
56 | |||
57 | /** |
||
58 | * Xhelp\NaiveBayesian constructor. |
||
59 | * @param NaiveBayesianStorage $nbs |
||
60 | */ |
||
61 | public function __construct(NaiveBayesianStorage $nbs) |
||
62 | { |
||
63 | $this->nbs = $nbs; |
||
64 | } |
||
65 | |||
66 | /** categorize a document. |
||
67 | * Get list of categories in which the document can be categorized |
||
68 | * with a score for each category. |
||
69 | * |
||
70 | * @param mixed $document |
||
71 | * @return array keys = category ids, values = scores |
||
72 | */ |
||
73 | public function categorize($document): array |
||
74 | { |
||
75 | $scores = []; |
||
76 | $categories = $this->nbs->getCategories(); |
||
77 | $tokens = $this->getTokens($document); |
||
78 | // calculate the score in each category |
||
79 | $total_words = 0; |
||
80 | $ncat = 0; |
||
81 | // while (list($category, $data) = each($categories)) { |
||
82 | foreach ($categories as $category => $data) { |
||
83 | $total_words += $data['word_count']; |
||
84 | ++$ncat; |
||
85 | } |
||
86 | // reset($categories); |
||
87 | // while (list($category, $data) = each($categories)) { |
||
88 | foreach ($categories as $category => $data) { |
||
89 | $scores[$category] = $data['probability']; |
||
90 | // small probability for a word not in the category |
||
91 | // maybe putting 1.0 as a 'no effect' word can also be good |
||
92 | $small_proba = 1.0 / ($data['word_count'] * 2); |
||
93 | // reset($tokens); |
||
94 | // while (list($token, $count) = each($tokens)) { |
||
95 | foreach ($tokens as $token => $count) { |
||
96 | if ($this->nbs->wordExists($token)) { |
||
97 | $word = $this->nbs->getWord($token, $category); |
||
98 | if ($word['count']) { |
||
99 | $proba = $word['count'] / $data['word_count']; |
||
100 | } else { |
||
101 | $proba = $small_proba; |
||
102 | } |
||
103 | $scores[$category] *= ($proba ** $count) * (($total_words / $ncat) ** $count); |
||
104 | // pow($total_words/$ncat, $count) is here to avoid underflow. |
||
105 | } |
||
106 | } |
||
107 | } |
||
108 | |||
109 | return $this->rescale($scores); |
||
110 | } |
||
111 | |||
112 | /** training against a document. |
||
113 | * Set a document as being in a specific category. The document becomes a reference |
||
114 | * and is saved in the table of references. After a set of training is done |
||
115 | * the updateProbabilities() function must be run. |
||
116 | * |
||
117 | * @param mixed $doc_id |
||
118 | * @param mixed $category_id |
||
119 | * @param mixed $content |
||
120 | * @return bool success |
||
121 | * @see updateProbabilities() |
||
122 | * @see untrain() |
||
123 | */ |
||
124 | public function train($doc_id, $category_id, $content): bool |
||
125 | { |
||
126 | $tokens = $this->getTokens($content); |
||
127 | // while (list($token, $count) = each($tokens)) { |
||
128 | foreach ($tokens as $token => $count) { |
||
129 | $this->nbs->updateWord($token, $count, $category_id); |
||
130 | } |
||
131 | $this->nbs->saveReference($doc_id, $category_id, $content); |
||
132 | |||
133 | return true; |
||
134 | } |
||
135 | |||
136 | /** untraining of a document. |
||
137 | * To remove just one document from the references. |
||
138 | * |
||
139 | * @param mixed $doc_id |
||
140 | * @return bool success |
||
141 | * @see updateProbabilities() |
||
142 | * @see untrain() |
||
143 | */ |
||
144 | public function untrain($doc_id): bool |
||
145 | { |
||
146 | $ref = $this->nbs->getReference($doc_id); |
||
147 | $tokens = $this->getTokens($ref['content']); |
||
148 | // while (list($token, $count) = each($tokens)) { |
||
149 | foreach ($tokens as $token => $count) { |
||
150 | $this->nbs->removeWord($token, $count, $ref['category_id']); |
||
151 | } |
||
152 | $this->nbs->removeReference($doc_id); |
||
153 | |||
154 | return true; |
||
155 | } |
||
156 | |||
157 | /** rescale the results between 0 and 1. |
||
158 | * |
||
159 | * @param mixed $scores |
||
160 | * @return array normalized scores (keys => category, values => scores) |
||
161 | * @author Ken Williams, [email protected] |
||
162 | * @see categorize() |
||
163 | */ |
||
164 | public function rescale($scores): array |
||
165 | { |
||
166 | // Scale everything back to a reasonable area in |
||
167 | // logspace (near zero), un-loggify, and normalize |
||
168 | $total = 0.0; |
||
169 | $max = 0.0; |
||
170 | // reset($scores); |
||
171 | // while (list($cat, $score) = each($scores)) { |
||
172 | foreach ($scores as $cat => $score) { |
||
173 | if ($score >= $max) { |
||
174 | $max = $score; |
||
175 | } |
||
176 | } |
||
177 | // reset($scores); |
||
178 | // while (list($cat, $score) = each($scores)) { |
||
179 | foreach ($scores as $cat => $score) { |
||
180 | $scores[$cat] = \exp($score - $max); |
||
181 | $total += $scores[$cat] ** 2; |
||
182 | } |
||
183 | $total = \sqrt($total); |
||
184 | // reset($scores); |
||
185 | // while (list($cat, $score) = each($scores)) { |
||
186 | foreach ($scores as $cat => $score) { |
||
187 | $scores[$cat] = (float)$score / $total; |
||
188 | } |
||
189 | \reset($scores); |
||
190 | |||
191 | return $scores; |
||
192 | } |
||
193 | |||
194 | /** update the probabilities of the categories and word count. |
||
195 | * This function must be run after a set of training |
||
196 | * |
||
197 | * @return bool sucess |
||
198 | * @see untrain() |
||
199 | * @see train() |
||
200 | */ |
||
201 | public function updateProbabilities(): bool |
||
202 | { |
||
203 | // this function is really only database manipulation |
||
204 | // that is why all is done in the NaiveBayesianStorage |
||
205 | return $this->nbs->updateProbabilities(); |
||
206 | } |
||
207 | |||
208 | /** Get the list of token to ignore. |
||
209 | * @return array ignore list |
||
210 | */ |
||
211 | public function getIgnoreList(): array |
||
212 | { |
||
213 | global $xhelp_noise_words; |
||
214 | $helper = Helper::getInstance(); |
||
215 | @$helper->loadLanguage('noise_words'); |
||
216 | |||
217 | return $xhelp_noise_words; |
||
218 | } |
||
219 | |||
220 | /** get the tokens from a string |
||
221 | * |
||
222 | * @author James Seng. [https://james.seng.cc/] (based on his perl version) |
||
223 | * |
||
224 | * |
||
225 | * @param string $string |
||
226 | * @return array tokens |
||
227 | * @internal param the $string string to get the tokens from |
||
228 | */ |
||
229 | private function getTokens(string $string): array |
||
230 | { |
||
231 | $rawtokens = []; |
||
0 ignored issues
–
show
Unused Code
introduced
by
![]() |
|||
232 | $tokens = []; |
||
233 | $string = $this->cleanString($string); |
||
234 | if (0 == \count($this->ignore_list)) { |
||
235 | $this->ignore_list = $this->getIgnoreList(); |
||
236 | } |
||
237 | $rawtokens = \preg_split('[^-_A-Za-z0-9]+', $string); |
||
238 | // remove some tokens |
||
239 | // while (list(, $token) = each($rawtokens)) { |
||
240 | foreach ($rawtokens as $key => $token) { |
||
241 | $token = \trim($token); |
||
242 | if (!isset($tokens[$token])) { |
||
243 | $tokens[$token] = 0; |
||
244 | } |
||
245 | if (!(('' == $token) || (mb_strlen($token) < $this->min_token_length) |
||
246 | || (mb_strlen($token) > $this->max_token_length) |
||
247 | || \preg_match('/^[0-9]+$/', $token) |
||
248 | || \in_array($token, $this->ignore_list))) { |
||
249 | $tokens[$token]++; |
||
250 | } |
||
251 | } |
||
252 | |||
253 | return $tokens; |
||
254 | } |
||
255 | |||
256 | /** clean a string from the diacritics |
||
257 | * |
||
258 | * @param mixed $string |
||
259 | * @return string clean string |
||
260 | * @author Antoine Bajolet [phpdig_at_toiletoine.net] |
||
261 | * @author SPIP [https://uzine.net/spip/] |
||
262 | */ |
||
263 | private function cleanString($string): string |
||
264 | { |
||
265 | $diac = /* A */ |
||
266 | \chr(192) . \chr(193) . \chr(194) . \chr(195) . \chr(196) . \chr(197) . /* a */ |
||
267 | \chr(224) . \chr(225) . \chr(226) . \chr(227) . \chr(228) . \chr(229) . /* O */ |
||
268 | \chr(210) . \chr(211) . \chr(212) . \chr(213) . \chr(214) . \chr(216) . /* o */ |
||
269 | \chr(242) . \chr(243) . \chr(244) . \chr(245) . \chr(246) . \chr(248) . /* E */ |
||
270 | \chr(200) . \chr(201) . \chr(202) . \chr(203) . /* e */ |
||
271 | \chr(232) . \chr(233) . \chr(234) . \chr(235) . /* Cc */ |
||
272 | \chr(199) . \chr(231) . /* I */ |
||
273 | \chr(204) . \chr(205) . \chr(206) . \chr(207) . /* i */ |
||
274 | \chr(236) . \chr(237) . \chr(238) . \chr(239) . /* U */ |
||
275 | \chr(217) . \chr(218) . \chr(219) . \chr(220) . /* u */ |
||
276 | \chr(249) . \chr(250) . \chr(251) . \chr(252) . /* yNn */ |
||
277 | \chr(255) . \chr(209) . \chr(241); |
||
278 | |||
279 | return \mb_strtolower(strtr($string, $diac, 'AAAAAAaaaaaaOOOOOOooooooEEEEeeeeCcIIIIiiiiUUUUuuuuyNn')); |
||
280 | } |
||
281 | } |
||
282 |