1
|
|
|
<?php declare(strict_types=1); |
2
|
|
|
|
3
|
|
|
namespace XoopsModules\Xhelp; |
4
|
|
|
|
5
|
|
|
/* |
6
|
|
|
***** BEGIN LICENSE BLOCK ***** |
7
|
|
|
This file is part of PHP Naive Bayesian Filter. |
8
|
|
|
|
9
|
|
|
The Initial Developer of the Original Code is |
10
|
|
|
Loic d'Anterroches [loic_at_xhtml.net]. |
11
|
|
|
Portions created by the Initial Developer are Copyright (C) 2003 |
12
|
|
|
the Initial Developer. All Rights Reserved. |
13
|
|
|
|
14
|
|
|
Contributor(s): |
15
|
|
|
See the source |
16
|
|
|
|
17
|
|
|
PHP Naive Bayesian Filter is free software; you can redistribute it |
18
|
|
|
and/or modify it under the terms of the GNU General Public License as |
19
|
|
|
published by the Free Software Foundation; either version 2 of |
20
|
|
|
the License, or (at your option) any later version. |
21
|
|
|
|
22
|
|
|
PHP Naive Bayesian Filter is distributed in the hope that it will |
23
|
|
|
be useful, but WITHOUT ANY WARRANTY; without even the implied |
24
|
|
|
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
25
|
|
|
See the GNU General Public License for more details. |
26
|
|
|
|
27
|
|
|
You should have received a copy of the GNU General Public License |
28
|
|
|
along with Foobar; if not, write to the Free Software |
29
|
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
30
|
|
|
|
31
|
|
|
Alternatively, the contents of this file may be used under the terms of |
32
|
|
|
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), |
33
|
|
|
in which case the provisions of the LGPL are applicable instead |
34
|
|
|
of those above. |
35
|
|
|
|
36
|
|
|
***** END LICENSE BLOCK ***** |
37
|
|
|
*/ |
38
|
|
|
|
39
|
|
|
/** |
40
|
|
|
* class NaiveBayesian |
41
|
|
|
*/ |
42
|
|
|
class NaiveBayesian |
43
|
|
|
{ |
44
|
|
|
/** min token length for it to be taken into consideration */ |
45
|
|
|
public $min_token_length = 3; |
46
|
|
|
/** max token length for it to be taken into consideration */ |
47
|
|
|
public $max_token_length = 15; |
48
|
|
|
/** list of token to ignore |
49
|
|
|
* @see getIgnoreList() |
50
|
|
|
*/ |
51
|
|
|
public $ignore_list = []; |
52
|
|
|
/** storage object |
53
|
|
|
* @see class NaiveBayesianStorage |
54
|
|
|
*/ |
55
|
|
|
public $nbs; |
56
|
|
|
|
57
|
|
|
/** |
58
|
|
|
* Xhelp\NaiveBayesian constructor. |
59
|
|
|
* @param NaiveBayesianStorage $nbs |
60
|
|
|
*/ |
61
|
|
|
public function __construct(NaiveBayesianStorage $nbs) |
62
|
|
|
{ |
63
|
|
|
$this->nbs = $nbs; |
64
|
|
|
} |
65
|
|
|
|
66
|
|
|
/** categorize a document. |
67
|
|
|
* Get list of categories in which the document can be categorized |
68
|
|
|
* with a score for each category. |
69
|
|
|
* |
70
|
|
|
* @param mixed $document |
71
|
|
|
* @return array keys = category ids, values = scores |
72
|
|
|
*/ |
73
|
|
|
public function categorize($document): array |
74
|
|
|
{ |
75
|
|
|
$scores = []; |
76
|
|
|
$categories = $this->nbs->getCategories(); |
77
|
|
|
$tokens = $this->getTokens($document); |
78
|
|
|
// calculate the score in each category |
79
|
|
|
$total_words = 0; |
80
|
|
|
$ncat = 0; |
81
|
|
|
// while (list($category, $data) = each($categories)) { |
82
|
|
|
foreach ($categories as $category => $data) { |
83
|
|
|
$total_words += $data['word_count']; |
84
|
|
|
++$ncat; |
85
|
|
|
} |
86
|
|
|
// reset($categories); |
87
|
|
|
// while (list($category, $data) = each($categories)) { |
88
|
|
|
foreach ($categories as $category => $data) { |
89
|
|
|
$scores[$category] = $data['probability']; |
90
|
|
|
// small probability for a word not in the category |
91
|
|
|
// maybe putting 1.0 as a 'no effect' word can also be good |
92
|
|
|
$small_proba = 1.0 / ($data['word_count'] * 2); |
93
|
|
|
// reset($tokens); |
94
|
|
|
// while (list($token, $count) = each($tokens)) { |
95
|
|
|
foreach ($tokens as $token => $count) { |
96
|
|
|
if ($this->nbs->wordExists($token)) { |
97
|
|
|
$word = $this->nbs->getWord($token, $category); |
98
|
|
|
if ($word['count']) { |
99
|
|
|
$proba = $word['count'] / $data['word_count']; |
100
|
|
|
} else { |
101
|
|
|
$proba = $small_proba; |
102
|
|
|
} |
103
|
|
|
$scores[$category] *= ($proba ** $count) * (($total_words / $ncat) ** $count); |
104
|
|
|
// pow($total_words/$ncat, $count) is here to avoid underflow. |
105
|
|
|
} |
106
|
|
|
} |
107
|
|
|
} |
108
|
|
|
|
109
|
|
|
return $this->rescale($scores); |
110
|
|
|
} |
111
|
|
|
|
112
|
|
|
/** training against a document. |
113
|
|
|
* Set a document as being in a specific category. The document becomes a reference |
114
|
|
|
* and is saved in the table of references. After a set of training is done |
115
|
|
|
* the updateProbabilities() function must be run. |
116
|
|
|
* |
117
|
|
|
* @param mixed $doc_id |
118
|
|
|
* @param mixed $category_id |
119
|
|
|
* @param mixed $content |
120
|
|
|
* @return bool success |
121
|
|
|
* @see updateProbabilities() |
122
|
|
|
* @see untrain() |
123
|
|
|
*/ |
124
|
|
|
public function train($doc_id, $category_id, $content): bool |
125
|
|
|
{ |
126
|
|
|
$tokens = $this->getTokens($content); |
127
|
|
|
// while (list($token, $count) = each($tokens)) { |
128
|
|
|
foreach ($tokens as $token => $count) { |
129
|
|
|
$this->nbs->updateWord($token, $count, $category_id); |
130
|
|
|
} |
131
|
|
|
$this->nbs->saveReference($doc_id, $category_id, $content); |
132
|
|
|
|
133
|
|
|
return true; |
134
|
|
|
} |
135
|
|
|
|
136
|
|
|
/** untraining of a document. |
137
|
|
|
* To remove just one document from the references. |
138
|
|
|
* |
139
|
|
|
* @param mixed $doc_id |
140
|
|
|
* @return bool success |
141
|
|
|
* @see updateProbabilities() |
142
|
|
|
* @see untrain() |
143
|
|
|
*/ |
144
|
|
|
public function untrain($doc_id): bool |
145
|
|
|
{ |
146
|
|
|
$ref = $this->nbs->getReference($doc_id); |
147
|
|
|
$tokens = $this->getTokens($ref['content']); |
148
|
|
|
// while (list($token, $count) = each($tokens)) { |
149
|
|
|
foreach ($tokens as $token => $count) { |
150
|
|
|
$this->nbs->removeWord($token, $count, $ref['category_id']); |
151
|
|
|
} |
152
|
|
|
$this->nbs->removeReference($doc_id); |
153
|
|
|
|
154
|
|
|
return true; |
155
|
|
|
} |
156
|
|
|
|
157
|
|
|
/** rescale the results between 0 and 1. |
158
|
|
|
* |
159
|
|
|
* @param mixed $scores |
160
|
|
|
* @return array normalized scores (keys => category, values => scores) |
161
|
|
|
* @author Ken Williams, [email protected] |
162
|
|
|
* @see categorize() |
163
|
|
|
*/ |
164
|
|
|
public function rescale($scores): array |
165
|
|
|
{ |
166
|
|
|
// Scale everything back to a reasonable area in |
167
|
|
|
// logspace (near zero), un-loggify, and normalize |
168
|
|
|
$total = 0.0; |
169
|
|
|
$max = 0.0; |
170
|
|
|
// reset($scores); |
171
|
|
|
// while (list($cat, $score) = each($scores)) { |
172
|
|
|
foreach ($scores as $cat => $score) { |
173
|
|
|
if ($score >= $max) { |
174
|
|
|
$max = $score; |
175
|
|
|
} |
176
|
|
|
} |
177
|
|
|
// reset($scores); |
178
|
|
|
// while (list($cat, $score) = each($scores)) { |
179
|
|
|
foreach ($scores as $cat => $score) { |
180
|
|
|
$scores[$cat] = \exp($score - $max); |
181
|
|
|
$total += $scores[$cat] ** 2; |
182
|
|
|
} |
183
|
|
|
$total = \sqrt($total); |
184
|
|
|
// reset($scores); |
185
|
|
|
// while (list($cat, $score) = each($scores)) { |
186
|
|
|
foreach ($scores as $cat => $score) { |
187
|
|
|
$scores[$cat] = (float)$score / $total; |
188
|
|
|
} |
189
|
|
|
\reset($scores); |
190
|
|
|
|
191
|
|
|
return $scores; |
192
|
|
|
} |
193
|
|
|
|
194
|
|
|
/** update the probabilities of the categories and word count. |
195
|
|
|
* This function must be run after a set of training |
196
|
|
|
* |
197
|
|
|
* @return bool sucess |
198
|
|
|
* @see untrain() |
199
|
|
|
* @see train() |
200
|
|
|
*/ |
201
|
|
|
public function updateProbabilities(): bool |
202
|
|
|
{ |
203
|
|
|
// this function is really only database manipulation |
204
|
|
|
// that is why all is done in the NaiveBayesianStorage |
205
|
|
|
return $this->nbs->updateProbabilities(); |
206
|
|
|
} |
207
|
|
|
|
208
|
|
|
/** Get the list of token to ignore. |
209
|
|
|
* @return array ignore list |
210
|
|
|
*/ |
211
|
|
|
public function getIgnoreList(): array |
212
|
|
|
{ |
213
|
|
|
global $xhelp_noise_words; |
214
|
|
|
$helper = Helper::getInstance(); |
215
|
|
|
@$helper->loadLanguage('noise_words'); |
|
|
|
|
216
|
|
|
|
217
|
|
|
return $xhelp_noise_words; |
218
|
|
|
} |
219
|
|
|
|
220
|
|
|
/** get the tokens from a string |
221
|
|
|
* |
222
|
|
|
* @author James Seng. [https://james.seng.cc/] (based on his perl version) |
223
|
|
|
* |
224
|
|
|
* |
225
|
|
|
* @param string $string |
226
|
|
|
* @return array tokens |
227
|
|
|
* @internal param the $string string to get the tokens from |
228
|
|
|
*/ |
229
|
|
|
private function getTokens(string $string): array |
230
|
|
|
{ |
231
|
|
|
$rawtokens = []; |
|
|
|
|
232
|
|
|
$tokens = []; |
233
|
|
|
$string = $this->cleanString($string); |
234
|
|
|
if (0 == \count($this->ignore_list)) { |
235
|
|
|
$this->ignore_list = $this->getIgnoreList(); |
236
|
|
|
} |
237
|
|
|
$rawtokens = \preg_split('[^-_A-Za-z0-9]+', $string); |
238
|
|
|
// remove some tokens |
239
|
|
|
// while (list(, $token) = each($rawtokens)) { |
240
|
|
|
foreach ($rawtokens as $key => $token) { |
241
|
|
|
$token = \trim($token); |
242
|
|
|
if (!isset($tokens[$token])) { |
243
|
|
|
$tokens[$token] = 0; |
244
|
|
|
} |
245
|
|
|
if (!(('' == $token) || (mb_strlen($token) < $this->min_token_length) |
246
|
|
|
|| (mb_strlen($token) > $this->max_token_length) |
247
|
|
|
|| \preg_match('/^[0-9]+$/', $token) |
248
|
|
|
|| \in_array($token, $this->ignore_list))) { |
249
|
|
|
$tokens[$token]++; |
250
|
|
|
} |
251
|
|
|
} |
252
|
|
|
|
253
|
|
|
return $tokens; |
254
|
|
|
} |
255
|
|
|
|
256
|
|
|
/** clean a string from the diacritics |
257
|
|
|
* |
258
|
|
|
* @param mixed $string |
259
|
|
|
* @return string clean string |
260
|
|
|
* @author Antoine Bajolet [phpdig_at_toiletoine.net] |
261
|
|
|
* @author SPIP [https://uzine.net/spip/] |
262
|
|
|
*/ |
263
|
|
|
private function cleanString($string): string |
264
|
|
|
{ |
265
|
|
|
$diac = /* A */ |
266
|
|
|
\chr(192) . \chr(193) . \chr(194) . \chr(195) . \chr(196) . \chr(197) . /* a */ |
267
|
|
|
\chr(224) . \chr(225) . \chr(226) . \chr(227) . \chr(228) . \chr(229) . /* O */ |
268
|
|
|
\chr(210) . \chr(211) . \chr(212) . \chr(213) . \chr(214) . \chr(216) . /* o */ |
269
|
|
|
\chr(242) . \chr(243) . \chr(244) . \chr(245) . \chr(246) . \chr(248) . /* E */ |
270
|
|
|
\chr(200) . \chr(201) . \chr(202) . \chr(203) . /* e */ |
271
|
|
|
\chr(232) . \chr(233) . \chr(234) . \chr(235) . /* Cc */ |
272
|
|
|
\chr(199) . \chr(231) . /* I */ |
273
|
|
|
\chr(204) . \chr(205) . \chr(206) . \chr(207) . /* i */ |
274
|
|
|
\chr(236) . \chr(237) . \chr(238) . \chr(239) . /* U */ |
275
|
|
|
\chr(217) . \chr(218) . \chr(219) . \chr(220) . /* u */ |
276
|
|
|
\chr(249) . \chr(250) . \chr(251) . \chr(252) . /* yNn */ |
277
|
|
|
\chr(255) . \chr(209) . \chr(241); |
278
|
|
|
|
279
|
|
|
return \mb_strtolower(strtr($string, $diac, 'AAAAAAaaaaaaOOOOOOooooooEEEEeeeeCcIIIIiiiiUUUUuuuuyNn')); |
280
|
|
|
} |
281
|
|
|
} |
282
|
|
|
|
If you suppress an error, we recommend checking for the error condition explicitly: