Completed
Push — master ( 39f179...514f8f )
by Tinghui
01:17
created

MLP.fit()   F

Complexity

Conditions 12

Size

Total Lines 77

Duplication

Lines 16
Ratio 20.78 %

Importance

Changes 1
Bugs 0 Features 0
Metric Value
cc 12
c 1
b 0
f 0
dl 16
loc 77
rs 2.1279

How to fix   Long Method    Complexity   

Long Method

Small methods make your code easier to understand, in particular if combined with a good name. Besides, if your method is small, finding a good name is usually much easier.

For example, if you find yourself adding comments to a method's body, this is usually a good sign to extract the commented part to a new method, and use the comment as a starting point when coming up with a good name for this new method.

Commonly applied refactorings include:

Complexity

Complex classes like MLP.fit() often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.

Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.

1
import logging
2
import numpy as np
3
import tensorflow as tf
4
from .layers import HiddenLayer, SoftmaxLayer
5
from .injectors import BatchInjector
6
from .criterion import MonitorBased, ConstIterations
7
8
logger = logging.getLogger(__name__)
9
10
11
class MLP:
12
    """Multi-Layer Perceptron
13
14
    Args:
15
        num_features (:obj:`int`): Number of features.
16
        num_classes (:obj:`int`): Number of classes.
17
        layers (:obj:`list` of :obj:`int`): Series of hidden auto-encoder layers.
18
        activation_fn: activation function used in hidden layer.
19
        optimizer: Optimizer used for updating weights.
20
21
    Attributes:
22
        num_features (:obj:`int`): Number of features.
23
        num_classes (:obj:`int`): Number of classes.
24
        x (:obj:`tensorflow.placeholder`): Input placeholder.
25
        y_ (:obj:`tensorflow.placeholder`): Output placeholder.
26
        inner_layers (:obj:`list`): List of inner hidden layers.
27
        summaries (:obj:`list`): List of tensorflow summaries.
28
        output_layer: Output softmax layer for multi-class classification, sigmoid for binary classification
29
        y (:obj:`tensorflow.Tensor`): Softmax/Sigmoid output layer output tensor.
30
        y_class (:obj:`tensorflow.Tensor`): Tensor to get class label from output layer.
31
        loss (:obj:`tensorflow.Tensor`): Tensor that represents the cross-entropy loss.
32
        correct_prediction (:obj:`tensorflow.Tensor`): Tensor that represents the correctness of classification result.
33
        accuracy (:obj:`tensorflow.Tensor`): Tensor that represents the accuracy of the classifier (exact matching
34
            ratio in multi-class classification)
35
        optimizer: Optimizer used for updating weights.
36
        fit_step (:obj:`tensorflow.Tensor`): Tensor to update weights based on the optimizer algorithm provided.
37
        sess: Tensorflow session.
38
        merged: Merged summaries.
39
    """
40
    def __init__(self, num_features, num_classes, layers, activation_fn=tf.sigmoid, optimizer=None):
41
        self.num_features = num_features
42
        self.num_classes = num_classes
43
        with tf.name_scope('input'):
44
            self.x = tf.placeholder(tf.float32, shape=[None, num_features], name='input_x')
45
            self.y_ = tf.placeholder(tf.float32, shape=[None, num_classes], name='input_y')
46
        self.inner_layers = []
47
        self.summaries = []
48
        # Create Layers
49
        for i in range(len(layers)):
50 View Code Duplication
            if i == 0:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
51
                # First Layer
52
                self.inner_layers.append(
53
                    HiddenLayer(num_features, layers[i], x=self.x, name=('Hidden%d' % i), activation_fn=activation_fn)
54
                )
55
            else:
56
                # inner Layer
57
                self.inner_layers.append(
58
                    HiddenLayer(layers[i-1], layers[i], x=self.inner_layers[i-1].y,
59
                                name=('Hidden%d' % i), activation_fn=activation_fn)
60
                )
61
            self.summaries += self.inner_layers[i].summaries
62 View Code Duplication
        if num_classes == 1:
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
63
            # Output Layers
64
            self.output_layer = HiddenLayer(layers[len(layers) - 1], num_classes, x=self.inner_layers[len(layers)-1].y,
65
                                            name='Output', activation_fn=tf.sigmoid)
66
            # Predicted Probability
67
            self.y = self.output_layer.y
68
            self.y_class = tf.cast(tf.greater_equal(self.y, 0.5), tf.float32)
69
            # Loss
70
            self.loss = tf.reduce_mean(
71
                tf.nn.sigmoid_cross_entropy_with_logits(self.output_layer.logits, self.y_,
72
                                                        name='SigmoidCrossEntropyLoss')
73
            )
74
            self.correct_prediction = tf.equal(self.y_class, self.y_)
75
            self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
76
        else:
77
            # Output Layers
78
            self.output_layer = SoftmaxLayer(layers[len(layers) - 1], num_classes, x=self.inner_layers[len(layers)-1].y,
79
                                             name='OutputLayer')
80
            # Predicted Probability
81
            self.y = self.output_layer.y
82
            self.y_class = tf.argmax(self.y, 1)
83
            # Loss
84
            self.loss = tf.reduce_mean(
85
                tf.nn.softmax_cross_entropy_with_logits(self.output_layer.logits, self.y_,
86
                                                        name='SoftmaxCrossEntropyLoss')
87
            )
88
            self.correct_prediction = tf.equal(self.y_class, tf.argmax(self.y_, 1))
89
            self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))
90
        self.summaries.append(tf.summary.scalar('cross_entropy', self.loss))
91
        self.summaries.append(tf.summary.scalar('accuracy', self.accuracy))
92
        self.summaries += self.output_layer.summaries
93
        if optimizer is None:
94
            self.optimizer = tf.train.AdamOptimizer()
95
        else:
96
            self.optimizer = optimizer
97
        with tf.name_scope('train'):
98
            self.fit_step = self.optimizer.minimize(self.loss)
99
        self.merged = tf.summary.merge(self.summaries)
100
        self.sess = None
101
102
    def fit(self, x, y, batch_size=100, iter_num=100,
103
            summaries_dir=None, summary_interval=100,
104
            test_x=None, test_y=None,
105
            session=None, criterion='const_iteration'):
106
        """Fit the model to the dataset
107
108
        Args:
109
            x (:obj:`numpy.ndarray`): Input features of shape (num_samples, num_features).
110
            y (:obj:`numpy.ndarray`): Corresponding Labels of shape (num_samples) for binary classification,
111
                or (num_samples, num_classes) for multi-class classification.
112
            batch_size (:obj:`int`): Batch size used in gradient descent.
113
            iter_num (:obj:`int`): Number of training iterations for const iterations, step depth for monitor based
114
                stopping criterion.
115
            summaries_dir (:obj:`str`): Path of the directory to store summaries and saved values.
116
            summary_interval (:obj:`int`): The step interval to export variable summaries.
117
            test_x (:obj:`numpy.ndarray`): Test feature array used for monitoring training progress.
118
            test_y (:obj:`numpy.ndarray): Test label array used for monitoring training progress.
119
            session (:obj:`tensorflow.Session`): Session to run training functions.
120
            criterion (:obj:`str`): Stopping criteria. 'const_iterations' or 'monitor_based'
121
        """
122
        if session is None:
123
            if self.sess is None:
124
                session = tf.Session()
125
                self.sess = session
126
            else:
127
                session = self.sess
128
        if summaries_dir is not None:
129
            train_writer = tf.summary.FileWriter(summaries_dir + '/train')
130
            test_writer = tf.summary.FileWriter(summaries_dir + '/test')
131
            valid_writer = tf.summary.FileWriter(summaries_dir + '/valid')
132
        session.run(tf.global_variables_initializer())
133
        # Get Stopping Criterion
134 View Code Duplication
        if criterion == 'const_iteration':
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
135
            criterion = ConstIterations(num_iters=iter_num)
136
        elif criterion == 'monitor_based':
137
            num_samples = x.shape[0]
138
            valid_set_len = int(1/5 * num_samples)
139
            valid_x = x[num_samples-valid_set_len:num_samples, :]
140
            valid_y = y[num_samples-valid_set_len:num_samples, :]
141
            x = x[0:num_samples-valid_set_len, :]
142
            y = y[0:num_samples-valid_set_len, :]
143
            _criterion = MonitorBased(n_steps=iter_num,
144
                                      monitor_fn=self.predict_accuracy, monitor_fn_args=(valid_x, valid_y),
145
                                      save_fn=tf.train.Saver().save,
146
                                      save_fn_args=(session, summaries_dir + '/best.ckpt'))
147
        else:
148
            logger.error('Wrong criterion %s specified.' % criterion)
149
            return
150
        # Setup batch injector
151
        injector = BatchInjector(data_x=x, data_y=y, batch_size=batch_size)
152
        i = 0
153
        train_accuracy = 0
154
        while _criterion.continue_learning():
155
            batch_x, batch_y = injector.next_batch()
156
            if summaries_dir is not None and (i % summary_interval == 0):
157
                summary, loss, accuracy = session.run([self.merged, self.loss, self.accuracy],
158
                                                      feed_dict={self.x: x, self.y_: y})
159
                train_writer.add_summary(summary, i)
160
                train_accuracy = accuracy
161
                logger.info('Step %d, train_set accuracy %g, loss %g' % (i, accuracy, loss))
162
                if (test_x is not None) and (test_y is not None):
163
                    merged, accuracy = session.run([self.merged, self.accuracy],
164
                                                   feed_dict={self.x: test_x, self.y_: test_y})
165
                    test_writer.add_summary(merged, i)
166
                    logger.info('test_set accuracy %g' % accuracy)
167
                if criterion == 'monitor_based':
168
                    merged, accuracy = session.run([self.merged, self.accuracy],
169
                                                   feed_dict={self.x: valid_x, self.y_: valid_y})
170
                    valid_writer.add_summary(merged, i)
171
                    logger.info('valid_set accuracy %g' % accuracy)
172
            loss, accuracy, _ = session.run([self.loss, self.accuracy, self.fit_step],
173
                                            feed_dict={self.x: batch_x, self.y_: batch_y})
174
            #logger.info('Step %d, training accuracy %g, loss %g' % (i, accuracy, loss))
175
            #_ = session.run(self.fit_step, feed_dict={self.x: batch_x, self.y_: batch_y})
176
            #logger.info('Step %d, training accuracy %g, loss %g' % (i, accuracy, loss))
177
            i += 1
178
        tf.train.Saver().restore(session, summaries_dir + '/best.ckpt')
179
180
    def predict_accuracy(self, x, y, session=None):
181
        """Get Accuracy given feature array and corresponding labels
182
        """
183
        if session is None:
184
            if self.sess is None:
185
                session = tf.Session()
186
                self.sess = session
187
            else:
188
                session = self.sess
189
        return session.run(self.accuracy, feed_dict={self.x: x, self.y_: y})
190
191
    def predict_proba(self, x, session=None):
192
        """Predict probability (Softmax)
193
        """
194
        if session is None:
195
            if self.sess is None:
196
                session = tf.Session()
197
                self.sess = session
198
            else:
199
                session = self.sess
200
        return session.run(self.y, feed_dict={self.x: x})
201
202
    def predict(self, x, session=None):
203
        if session is None:
204
            if self.sess is None:
205
                session = tf.Session()
206
                self.sess = session
207
            else:
208
                session = self.sess
209
        return session.run(self.y_class, feed_dict={self.x: x})
210