| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                import logging  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                import numpy as np  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                import tensorflow as tf  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                from .layers import HiddenLayer, SoftmaxLayer  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                from .injectors import BatchInjector  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                from .criterion import MonitorBased, ConstIterations  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                logger = logging.getLogger(__name__)  | 
            
            
                                                                                                            
                            
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                                                                            
                                                                
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                class MLP:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                    """Multi-Layer Perceptron  | 
            
            
                                                        
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                    Args:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                        num_features (:obj:`int`): Number of features.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                        num_classes (:obj:`int`): Number of classes.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                        layers (:obj:`list` of :obj:`int`): Series of hidden auto-encoder layers.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                        activation_fn: activation function used in hidden layer.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                        optimizer: Optimizer used for updating weights.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                    Attributes:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                        num_features (:obj:`int`): Number of features.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                        num_classes (:obj:`int`): Number of classes.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                        x (:obj:`tensorflow.placeholder`): Input placeholder.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                        y_ (:obj:`tensorflow.placeholder`): Output placeholder.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                        inner_layers (:obj:`list`): List of inner hidden layers.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                        summaries (:obj:`list`): List of tensorflow summaries.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                        output_layer: Output softmax layer for multi-class classification, sigmoid for binary classification  | 
            
            
                                                        
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                        y (:obj:`tensorflow.Tensor`): Softmax/Sigmoid output layer output tensor.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                        y_class (:obj:`tensorflow.Tensor`): Tensor to get class label from output layer.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                 | 
                        loss (:obj:`tensorflow.Tensor`): Tensor that represents the cross-entropy loss.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                        correct_prediction (:obj:`tensorflow.Tensor`): Tensor that represents the correctness of classification result.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                        accuracy (:obj:`tensorflow.Tensor`): Tensor that represents the accuracy of the classifier (exact matching  | 
            
            
                                                        
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                            ratio in multi-class classification)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                        optimizer: Optimizer used for updating weights.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                        fit_step (:obj:`tensorflow.Tensor`): Tensor to update weights based on the optimizer algorithm provided.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                        sess: Tensorflow session.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                        merged: Merged summaries.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                    """  | 
            
            
                                                        
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                    def __init__(self, num_features, num_classes, layers, activation_fn=tf.sigmoid, optimizer=None):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_features = num_features  | 
            
            
                                                        
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                        self.num_classes = num_classes  | 
            
            
                                                        
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                        with tf.name_scope('input'): | 
            
            
                                                        
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                            self.x = tf.placeholder(tf.float32, shape=[None, num_features], name='input_x')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                            self.y_ = tf.placeholder(tf.float32, shape=[None, num_classes], name='input_y')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                        self.inner_layers = []  | 
            
            
                                                        
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries = []  | 
            
            
                                                        
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                        # Create Layers  | 
            
            
                                                        
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                        for i in range(len(layers)):  | 
            
            
                                                        
            
                                                                    
                                                                                                        
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                            if i == 0:  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                        
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                                # First Layer  | 
            
            
                                                        
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                                self.inner_layers.append(  | 
            
            
                                                        
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                                    HiddenLayer(num_features, layers[i], x=self.x, name=('Hidden%d' % i), activation_fn=activation_fn) | 
            
            
                                                        
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                                )  | 
            
            
                                                        
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                                # inner Layer  | 
            
            
                                                        
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                                self.inner_layers.append(  | 
            
            
                                                        
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                                    HiddenLayer(layers[i-1], layers[i], x=self.inner_layers[i-1].y,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                                                name=('Hidden%d' % i), activation_fn=activation_fn) | 
            
            
                                                        
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                                )  | 
            
            
                                                        
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                            self.summaries += self.inner_layers[i].summaries  | 
            
            
                                                        
            
                                                                    
                                                                                                        
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                        if num_classes == 1:  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                        
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                            # Output Layers  | 
            
            
                                                        
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                            self.output_layer = HiddenLayer(layers[len(layers) - 1], num_classes, x=self.inner_layers[len(layers)-1].y,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                                                            name='Output', activation_fn=tf.sigmoid)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                            # Predicted Probability  | 
            
            
                                                        
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                            self.y = self.output_layer.y  | 
            
            
                                                        
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                            self.y_class = tf.cast(tf.greater_equal(self.y, 0.5), tf.float32)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                            # Loss  | 
            
            
                                                        
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                            self.loss = tf.reduce_mean(  | 
            
            
                                                        
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                                tf.nn.sigmoid_cross_entropy_with_logits(self.output_layer.logits, self.y_,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                                                                        name='SigmoidCrossEntropyLoss')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    73
                 | 
                                    
                                                     | 
                
                 | 
                            )  | 
            
            
                                                        
            
                                    
            
            
                | 
                    74
                 | 
                                    
                                                     | 
                
                 | 
                            self.correct_prediction = tf.equal(self.y_class, self.y_)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    75
                 | 
                                    
                                                     | 
                
                 | 
                            self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    76
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    77
                 | 
                                    
                                                     | 
                
                 | 
                            # Output Layers  | 
            
            
                                                        
            
                                    
            
            
                | 
                    78
                 | 
                                    
                                                     | 
                
                 | 
                            self.output_layer = SoftmaxLayer(layers[len(layers) - 1], num_classes, x=self.inner_layers[len(layers)-1].y,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    79
                 | 
                                    
                                                     | 
                
                 | 
                                                             name='OutputLayer')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    80
                 | 
                                    
                                                     | 
                
                 | 
                            # Predicted Probability  | 
            
            
                                                        
            
                                    
            
            
                | 
                    81
                 | 
                                    
                                                     | 
                
                 | 
                            self.y = self.output_layer.y  | 
            
            
                                                        
            
                                    
            
            
                | 
                    82
                 | 
                                    
                                                     | 
                
                 | 
                            self.y_class = tf.argmax(self.y, 1)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    83
                 | 
                                    
                                                     | 
                
                 | 
                            # Loss  | 
            
            
                                                        
            
                                    
            
            
                | 
                    84
                 | 
                                    
                                                     | 
                
                 | 
                            self.loss = tf.reduce_mean(  | 
            
            
                                                        
            
                                    
            
            
                | 
                    85
                 | 
                                    
                                                     | 
                
                 | 
                                tf.nn.softmax_cross_entropy_with_logits(self.output_layer.logits, self.y_,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    86
                 | 
                                    
                                                     | 
                
                 | 
                                                                        name='SoftmaxCrossEntropyLoss')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    87
                 | 
                                    
                                                     | 
                
                 | 
                            )  | 
            
            
                                                        
            
                                    
            
            
                | 
                    88
                 | 
                                    
                                                     | 
                
                 | 
                            self.correct_prediction = tf.equal(self.y_class, tf.argmax(self.y_, 1))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    89
                 | 
                                    
                                                     | 
                
                 | 
                            self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    90
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries.append(tf.summary.scalar('cross_entropy', self.loss)) | 
            
            
                                                        
            
                                    
            
            
                | 
                    91
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries.append(tf.summary.scalar('accuracy', self.accuracy)) | 
            
            
                                                        
            
                                    
            
            
                | 
                    92
                 | 
                                    
                                                     | 
                
                 | 
                        self.summaries += self.output_layer.summaries  | 
            
            
                                                        
            
                                    
            
            
                | 
                    93
                 | 
                                    
                                                     | 
                
                 | 
                        if optimizer is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    94
                 | 
                                    
                                                     | 
                
                 | 
                            self.optimizer = tf.train.AdamOptimizer()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    95
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    96
                 | 
                                    
                                                     | 
                
                 | 
                            self.optimizer = optimizer  | 
            
            
                                                        
            
                                    
            
            
                | 
                    97
                 | 
                                    
                                                     | 
                
                 | 
                        with tf.name_scope('train'): | 
            
            
                                                        
            
                                    
            
            
                | 
                    98
                 | 
                                    
                                                     | 
                
                 | 
                            self.fit_step = self.optimizer.minimize(self.loss)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    99
                 | 
                                    
                                                     | 
                
                 | 
                        self.merged = tf.summary.merge(self.summaries)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    100
                 | 
                                    
                                                     | 
                
                 | 
                        self.sess = None  | 
            
            
                                                        
            
                                    
            
            
                | 
                    101
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    102
                 | 
                                    
                                                     | 
                
                 | 
                    def fit(self, x, y, batch_size=100, iter_num=100,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    103
                 | 
                                    
                                                     | 
                
                 | 
                            summaries_dir=None, summary_interval=100,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    104
                 | 
                                    
                                                     | 
                
                 | 
                            test_x=None, test_y=None,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    105
                 | 
                                    
                                                     | 
                
                 | 
                            session=None, criterion='const_iteration'):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    106
                 | 
                                    
                                                     | 
                
                 | 
                        """Fit the model to the dataset  | 
            
            
                                                        
            
                                    
            
            
                | 
                    107
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    108
                 | 
                                    
                                                     | 
                
                 | 
                        Args:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    109
                 | 
                                    
                                                     | 
                
                 | 
                            x (:obj:`numpy.ndarray`): Input features of shape (num_samples, num_features).  | 
            
            
                                                        
            
                                    
            
            
                | 
                    110
                 | 
                                    
                                                     | 
                
                 | 
                            y (:obj:`numpy.ndarray`): Corresponding Labels of shape (num_samples) for binary classification,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    111
                 | 
                                    
                                                     | 
                
                 | 
                                or (num_samples, num_classes) for multi-class classification.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    112
                 | 
                                    
                                                     | 
                
                 | 
                            batch_size (:obj:`int`): Batch size used in gradient descent.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    113
                 | 
                                    
                                                     | 
                
                 | 
                            iter_num (:obj:`int`): Number of training iterations for const iterations, step depth for monitor based  | 
            
            
                                                        
            
                                    
            
            
                | 
                    114
                 | 
                                    
                                                     | 
                
                 | 
                                stopping criterion.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    115
                 | 
                                    
                                                     | 
                
                 | 
                            summaries_dir (:obj:`str`): Path of the directory to store summaries and saved values.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    116
                 | 
                                    
                                                     | 
                
                 | 
                            summary_interval (:obj:`int`): The step interval to export variable summaries.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    117
                 | 
                                    
                                                     | 
                
                 | 
                            test_x (:obj:`numpy.ndarray`): Test feature array used for monitoring training progress.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    118
                 | 
                                    
                                                     | 
                
                 | 
                            test_y (:obj:`numpy.ndarray): Test label array used for monitoring training progress.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    119
                 | 
                                    
                                                     | 
                
                 | 
                            session (:obj:`tensorflow.Session`): Session to run training functions.  | 
            
            
                                                        
            
                                    
            
            
                | 
                    120
                 | 
                                    
                                                     | 
                
                 | 
                            criterion (:obj:`str`): Stopping criteria. 'const_iterations' or 'monitor_based'  | 
            
            
                                                        
            
                                    
            
            
                | 
                    121
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                        
            
                                    
            
            
                | 
                    122
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    123
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    124
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    125
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                        
            
                                    
            
            
                | 
                    126
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    127
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                        
            
                                    
            
            
                | 
                    128
                 | 
                                    
                                                     | 
                
                 | 
                        if summaries_dir is not None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    129
                 | 
                                    
                                                     | 
                
                 | 
                            train_writer = tf.summary.FileWriter(summaries_dir + '/train')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    130
                 | 
                                    
                                                     | 
                
                 | 
                            test_writer = tf.summary.FileWriter(summaries_dir + '/test')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    131
                 | 
                                    
                                                     | 
                
                 | 
                            valid_writer = tf.summary.FileWriter(summaries_dir + '/valid')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    132
                 | 
                                    
                                                     | 
                
                 | 
                        session.run(tf.global_variables_initializer())  | 
            
            
                                                        
            
                                    
            
            
                | 
                    133
                 | 
                                    
                                                     | 
                
                 | 
                        # Get Stopping Criterion  | 
            
            
                                                        
            
                                                                    
                                                                                                        
            
            
                | 
                    134
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                        if criterion == 'const_iteration':  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                        
            
                                    
            
            
                | 
                    135
                 | 
                                    
                                                     | 
                
                 | 
                            criterion = ConstIterations(num_iters=iter_num)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    136
                 | 
                                    
                                                     | 
                
                 | 
                        elif criterion == 'monitor_based':  | 
            
            
                                                        
            
                                    
            
            
                | 
                    137
                 | 
                                    
                                                     | 
                
                 | 
                            num_samples = x.shape[0]  | 
            
            
                                                        
            
                                    
            
            
                | 
                    138
                 | 
                                    
                                                     | 
                
                 | 
                            valid_set_len = int(1/5 * num_samples)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    139
                 | 
                                    
                                                     | 
                
                 | 
                            valid_x = x[num_samples-valid_set_len:num_samples, :]  | 
            
            
                                                        
            
                                    
            
            
                | 
                    140
                 | 
                                    
                                                     | 
                
                 | 
                            valid_y = y[num_samples-valid_set_len:num_samples, :]  | 
            
            
                                                        
            
                                    
            
            
                | 
                    141
                 | 
                                    
                                                     | 
                
                 | 
                            x = x[0:num_samples-valid_set_len, :]  | 
            
            
                                                        
            
                                    
            
            
                | 
                    142
                 | 
                                    
                                                     | 
                
                 | 
                            y = y[0:num_samples-valid_set_len, :]  | 
            
            
                                                        
            
                                    
            
            
                | 
                    143
                 | 
                                    
                                                     | 
                
                 | 
                            _criterion = MonitorBased(n_steps=iter_num,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    144
                 | 
                                    
                                                     | 
                
                 | 
                                                      monitor_fn=self.predict_accuracy, monitor_fn_args=(valid_x, valid_y),  | 
            
            
                                                        
            
                                    
            
            
                | 
                    145
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn=tf.train.Saver().save,  | 
            
            
                                                        
            
                                    
            
            
                | 
                    146
                 | 
                                    
                                                     | 
                
                 | 
                                                      save_fn_args=(session, summaries_dir + '/best.ckpt'))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    147
                 | 
                                    
                                                     | 
                
                 | 
                        else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    148
                 | 
                                    
                                                     | 
                
                 | 
                            logger.error('Wrong criterion %s specified.' % criterion) | 
            
            
                                                        
            
                                    
            
            
                | 
                    149
                 | 
                                    
                                                     | 
                
                 | 
                            return  | 
            
            
                                                        
            
                                    
            
            
                | 
                    150
                 | 
                                    
                                                     | 
                
                 | 
                        # Setup batch injector  | 
            
            
                                                        
            
                                    
            
            
                | 
                    151
                 | 
                                    
                                                     | 
                
                 | 
                        injector = BatchInjector(data_x=x, data_y=y, batch_size=batch_size)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    152
                 | 
                                    
                                                     | 
                
                 | 
                        i = 0  | 
            
            
                                                        
            
                                    
            
            
                | 
                    153
                 | 
                                    
                                                     | 
                
                 | 
                        train_accuracy = 0  | 
            
            
                                                        
            
                                    
            
            
                | 
                    154
                 | 
                                    
                                                     | 
                
                 | 
                        while _criterion.continue_learning():  | 
            
            
                                                        
            
                                    
            
            
                | 
                    155
                 | 
                                    
                                                     | 
                
                 | 
                            batch_x, batch_y = injector.next_batch()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    156
                 | 
                                    
                                                     | 
                
                 | 
                            if summaries_dir is not None and (i % summary_interval == 0):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    157
                 | 
                                    
                                                     | 
                
                 | 
                                summary, loss, accuracy = session.run([self.merged, self.loss, self.accuracy],  | 
            
            
                                                        
            
                                    
            
            
                | 
                    158
                 | 
                                    
                                                     | 
                
                 | 
                                                                      feed_dict={self.x: x, self.y_: y}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    159
                 | 
                                    
                                                     | 
                
                 | 
                                train_writer.add_summary(summary, i)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    160
                 | 
                                    
                                                     | 
                
                 | 
                                train_accuracy = accuracy  | 
            
            
                                                        
            
                                    
            
            
                | 
                    161
                 | 
                                    
                                                     | 
                
                 | 
                                logger.info('Step %d, train_set accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                        
            
                                    
            
            
                | 
                    162
                 | 
                                    
                                                     | 
                
                 | 
                                if (test_x is not None) and (test_y is not None):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    163
                 | 
                                    
                                                     | 
                
                 | 
                                    merged, accuracy = session.run([self.merged, self.accuracy],  | 
            
            
                                                        
            
                                    
            
            
                | 
                    164
                 | 
                                    
                                                     | 
                
                 | 
                                                                   feed_dict={self.x: test_x, self.y_: test_y}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    165
                 | 
                                    
                                                     | 
                
                 | 
                                    test_writer.add_summary(merged, i)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    166
                 | 
                                    
                                                     | 
                
                 | 
                                    logger.info('test_set accuracy %g' % accuracy) | 
            
            
                                                        
            
                                    
            
            
                | 
                    167
                 | 
                                    
                                                     | 
                
                 | 
                                if criterion == 'monitor_based':  | 
            
            
                                                        
            
                                    
            
            
                | 
                    168
                 | 
                                    
                                                     | 
                
                 | 
                                    merged, accuracy = session.run([self.merged, self.accuracy],  | 
            
            
                                                        
            
                                    
            
            
                | 
                    169
                 | 
                                    
                                                     | 
                
                 | 
                                                                   feed_dict={self.x: valid_x, self.y_: valid_y}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    170
                 | 
                                    
                                                     | 
                
                 | 
                                    valid_writer.add_summary(merged, i)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    171
                 | 
                                    
                                                     | 
                
                 | 
                                    logger.info('valid_set accuracy %g' % accuracy) | 
            
            
                                                        
            
                                    
            
            
                | 
                    172
                 | 
                                    
                                                     | 
                
                 | 
                            loss, accuracy, _ = session.run([self.loss, self.accuracy, self.fit_step],  | 
            
            
                                                        
            
                                    
            
            
                | 
                    173
                 | 
                                    
                                                     | 
                
                 | 
                                                            feed_dict={self.x: batch_x, self.y_: batch_y}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    174
                 | 
                                    
                                                     | 
                
                 | 
                            #logger.info('Step %d, training accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                        
            
                                    
            
            
                | 
                    175
                 | 
                                    
                                                     | 
                
                 | 
                            #_ = session.run(self.fit_step, feed_dict={self.x: batch_x, self.y_: batch_y}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    176
                 | 
                                    
                                                     | 
                
                 | 
                            #logger.info('Step %d, training accuracy %g, loss %g' % (i, accuracy, loss)) | 
            
            
                                                        
            
                                    
            
            
                | 
                    177
                 | 
                                    
                                                     | 
                
                 | 
                            i += 1  | 
            
            
                                                        
            
                                    
            
            
                | 
                    178
                 | 
                                    
                                                     | 
                
                 | 
                        tf.train.Saver().restore(session, summaries_dir + '/best.ckpt')  | 
            
            
                                                        
            
                                    
            
            
                | 
                    179
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    180
                 | 
                                    
                                                     | 
                
                 | 
                    def predict_accuracy(self, x, y, session=None):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    181
                 | 
                                    
                                                     | 
                
                 | 
                        """Get Accuracy given feature array and corresponding labels  | 
            
            
                                                        
            
                                    
            
            
                | 
                    182
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                        
            
                                    
            
            
                | 
                    183
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    184
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    185
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    186
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                        
            
                                    
            
            
                | 
                    187
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    188
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                        
            
                                    
            
            
                | 
                    189
                 | 
                                    
                                                     | 
                
                 | 
                        return session.run(self.accuracy, feed_dict={self.x: x, self.y_: y}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    190
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    191
                 | 
                                    
                                                     | 
                
                 | 
                    def predict_proba(self, x, session=None):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    192
                 | 
                                    
                                                     | 
                
                 | 
                        """Predict probability (Softmax)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    193
                 | 
                                    
                                                     | 
                
                 | 
                        """  | 
            
            
                                                        
            
                                    
            
            
                | 
                    194
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    195
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    196
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    197
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                        
            
                                    
            
            
                | 
                    198
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    199
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                        
            
                                    
            
            
                | 
                    200
                 | 
                                    
                                                     | 
                
                 | 
                        return session.run(self.y, feed_dict={self.x: x}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    201
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    202
                 | 
                                    
                                                     | 
                
                 | 
                    def predict(self, x, session=None):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    203
                 | 
                                    
                                                     | 
                
                 | 
                        if session is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    204
                 | 
                                    
                                                     | 
                
                 | 
                            if self.sess is None:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    205
                 | 
                                    
                                                     | 
                
                 | 
                                session = tf.Session()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    206
                 | 
                                    
                                                     | 
                
                 | 
                                self.sess = session  | 
            
            
                                                        
            
                                    
            
            
                | 
                    207
                 | 
                                    
                                                     | 
                
                 | 
                            else:  | 
            
            
                                                        
            
                                    
            
            
                | 
                    208
                 | 
                                    
                                                     | 
                
                 | 
                                session = self.sess  | 
            
            
                                                        
            
                                    
            
            
                | 
                    209
                 | 
                                    
                                                     | 
                
                 | 
                        return session.run(self.y_class, feed_dict={self.x: x}) | 
            
            
                                                        
            
                                    
            
            
                | 
                    210
                 | 
                                    
                                                     | 
                
                 | 
                 |