| Total Complexity | 46 |
| Total Lines | 278 |
| Duplicated Lines | 29.14 % |
| Changes | 2 | ||
| Bugs | 0 | Features | 0 |
Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.
Common duplication problems, and corresponding solutions are:
Complex classes like SDA often do a lot of different things. To break such a class down, we need to identify a cohesive component within that class. A common approach to find such a component is to look for fields/methods that share the same prefixes, or suffixes.
Once you have determined the fields that belong together, you can apply the Extract Class refactoring. If the component makes sense as a sub-class, Extract Subclass is also a candidate, and is often faster.
| 1 | import logging |
||
| 11 | class SDA: |
||
| 12 | """Stacked Auto-encoder |
||
| 13 | |||
| 14 | Args: |
||
| 15 | num_features (:obj:`int`): Number of features. |
||
| 16 | num_classes (:obj:`int`): Number of classes. |
||
| 17 | layers (:obj:`list` of :obj:`int`): Series of hidden auto-encoder layers. |
||
| 18 | encode_optimizer: Optimizer used for auto-encoding process. |
||
| 19 | tuning_optimizer: Optimizer used for fine tuning. |
||
| 20 | |||
| 21 | Attributes: |
||
| 22 | num_features (:obj:`int`): Number of features. |
||
| 23 | num_classes (:obj:`int`): Number of classes. |
||
| 24 | x (:obj:`tensorflow.placeholder`): Input placeholder. |
||
| 25 | y_ (:obj:`tensorflow.placeholder`): Output placeholder. |
||
| 26 | inner_layers (:obj:`list`): List of auto-encoder hidden layers. |
||
| 27 | |||
| 28 | """ |
||
| 29 | def __init__(self, num_features, num_classes, layers, encode_optimizer=None, tuning_optimizer=None): |
||
| 30 | self.num_features = num_features |
||
| 31 | self.num_classes = num_classes |
||
| 32 | with tf.name_scope('input'): |
||
| 33 | self.x = tf.placeholder(tf.float32, shape=[None, num_features], name='input_x') |
||
| 34 | self.y_ = tf.placeholder(tf.float32, shape=[None, num_classes], name='input_y') |
||
| 35 | self.inner_layers = [] |
||
| 36 | self.summaries = [] |
||
| 37 | self.encode_opts = [] |
||
| 38 | if encode_optimizer is None: |
||
| 39 | self.encode_optimizer = tf.train.AdamOptimizer() |
||
| 40 | else: |
||
| 41 | self.encode_optimizer = encode_optimizer |
||
| 42 | if tuning_optimizer is None: |
||
| 43 | self.tuning_optimizer = tf.train.AdamOptimizer() |
||
| 44 | else: |
||
| 45 | self.tuning_optimizer = tuning_optimizer |
||
| 46 | # Create Layers |
||
| 47 | for i in range(len(layers)): |
||
| 48 | View Code Duplication | if i == 0: |
|
|
|
|||
| 49 | # First Layer |
||
| 50 | self.inner_layers.append( |
||
| 51 | AutoencoderLayer(num_features, layers[i], x=self.x, name=('Hidden%d' % i)) |
||
| 52 | ) |
||
| 53 | else: |
||
| 54 | # inner Layer |
||
| 55 | self.inner_layers.append( |
||
| 56 | AutoencoderLayer(layers[i-1], layers[i], x=self.inner_layers[i-1].y, name=('Hidden%d' % i)) |
||
| 57 | ) |
||
| 58 | self.summaries += self.inner_layers[i].summaries |
||
| 59 | self.encode_opts.append( |
||
| 60 | self.encode_optimizer.minimize(self.inner_layers[i].encode_loss, |
||
| 61 | var_list=self.inner_layers[i].variables) |
||
| 62 | ) |
||
| 63 | View Code Duplication | if num_classes == 1: |
|
| 64 | # Output Layers |
||
| 65 | self.output_layer = HiddenLayer(layers[len(layers) - 1], num_classes, x=self.inner_layers[len(layers)-1].y, |
||
| 66 | name='Output', activation_fn=tf.sigmoid) |
||
| 67 | # Predicted Probability |
||
| 68 | self.y = self.output_layer.y |
||
| 69 | self.y_class = tf.cast(tf.greater_equal(self.y, 0.5), tf.float32) |
||
| 70 | # Loss |
||
| 71 | self.loss = tf.reduce_mean( |
||
| 72 | tf.nn.sigmoid_cross_entropy_with_logits(self.output_layer.logits, self.y_, |
||
| 73 | name='SigmoidCrossEntropyLoss') |
||
| 74 | ) |
||
| 75 | self.correct_prediction = tf.equal(self.y_class, self.y_) |
||
| 76 | self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) |
||
| 77 | else: |
||
| 78 | # Output Layers |
||
| 79 | self.output_layer = SoftmaxLayer(layers[len(layers) - 1], num_classes, x=self.inner_layers[len(layers)-1].y, |
||
| 80 | name='OutputLayer') |
||
| 81 | # Predicted Probability |
||
| 82 | self.y = self.output_layer.y |
||
| 83 | self.y_class = tf.argmax(self.y, 1) |
||
| 84 | # Loss |
||
| 85 | self.loss = tf.reduce_mean( |
||
| 86 | tf.nn.softmax_cross_entropy_with_logits(logits=self.output_layer.logits, labels=self.y_, |
||
| 87 | name='SoftmaxCrossEntropyLoss') |
||
| 88 | ) |
||
| 89 | self.correct_prediction = tf.equal(self.y_class, tf.argmax(self.y_, 1)) |
||
| 90 | self.accuracy = tf.reduce_mean(tf.cast(self.correct_prediction, tf.float32)) |
||
| 91 | self.summaries.append(tf.summary.scalar('cross_entropy', self.loss)) |
||
| 92 | self.summaries.append(tf.summary.scalar('accuracy', self.accuracy)) |
||
| 93 | self.summaries += self.output_layer.summaries |
||
| 94 | with tf.name_scope('train'): |
||
| 95 | self.fine_tuning = self.tuning_optimizer.minimize(self.loss) |
||
| 96 | self.merged = tf.summary.merge(self.summaries) |
||
| 97 | self.sess = None |
||
| 98 | |||
| 99 | def fit(self, x, y, batch_size=100, |
||
| 100 | pretrain_iter_num=100, pretrain_criterion='const_iterations', |
||
| 101 | tuning_iter_num=100, tuning_criterion='const_iterations', |
||
| 102 | summaries_dir=None, test_x=None, test_y=None, summary_interval=10, |
||
| 103 | session=None): |
||
| 104 | """Fit the model to the dataset |
||
| 105 | |||
| 106 | Args: |
||
| 107 | x (:obj:`numpy.ndarray`): Input features of shape (num_samples, num_features). |
||
| 108 | y (:obj:`numpy.ndarray`): Corresponding Labels of shape (num_samples) for binary classification, |
||
| 109 | or (num_samples, num_classes) for multi-class classification. |
||
| 110 | batch_size (:obj:`int`): Batch size used in gradient descent. |
||
| 111 | pretrain_iter_num (:obj:`int`): Number of const iterations or search depth for monitor based stopping |
||
| 112 | criterion in pre-training stage |
||
| 113 | pretrain_criterion (:obj:`str`): Stopping criteria in pre-training stage ('const_iterations' or |
||
| 114 | 'monitor_based') |
||
| 115 | tuning_iter_num (:obj:`int`): Number of const iterations or search depth for monitor based stopping |
||
| 116 | criterion in fine-tuning stage |
||
| 117 | tuning_criterion (:obj:`str`): Stopping criteria in fine-tuning stage ('const_iterations' or |
||
| 118 | 'monitor_based') |
||
| 119 | summaries_dir (:obj:`str`): Path of the directory to store summaries and saved values. |
||
| 120 | summary_interval (:obj:`int`): The step interval to export variable summaries. |
||
| 121 | test_x (:obj:`numpy.ndarray`): Test feature array used for monitoring training progress. |
||
| 122 | test_y (:obj:`numpy.ndarray): Test label array used for monitoring training progress. |
||
| 123 | session (:obj:`tensorflow.Session`): Session to run training functions. |
||
| 124 | """ |
||
| 125 | if session is None: |
||
| 126 | if self.sess is None: |
||
| 127 | session = tf.Session() |
||
| 128 | self.sess = session |
||
| 129 | else: |
||
| 130 | session = self.sess |
||
| 131 | session.run(tf.global_variables_initializer()) |
||
| 132 | # Pre-training stage: layer by layer |
||
| 133 | for j in range(len(self.inner_layers)): |
||
| 134 | current_layer = self.inner_layers[j] |
||
| 135 | if summaries_dir is not None: |
||
| 136 | layer_summaries_dir = '%s/pretrain_layer%d' % (summaries_dir, j) |
||
| 137 | train_writer = tf.summary.FileWriter(layer_summaries_dir + '/train') |
||
| 138 | test_writer = tf.summary.FileWriter(layer_summaries_dir + '/test') |
||
| 139 | valid_writer = tf.summary.FileWriter(layer_summaries_dir + '/valid') |
||
| 140 | # Get Stopping Criterion |
||
| 141 | if pretrain_criterion == 'const_iterations': |
||
| 142 | _pretrain_criterion = ConstIterations(num_iters=pretrain_iter_num) |
||
| 143 | train_x = x |
||
| 144 | train_y = y |
||
| 145 | elif pretrain_criterion == 'monitor_based': |
||
| 146 | num_samples = x.shape[0] |
||
| 147 | valid_set_len = int(1 / 5 * num_samples) |
||
| 148 | valid_x = x[num_samples - valid_set_len:num_samples, :] |
||
| 149 | valid_y = y[num_samples - valid_set_len:num_samples, :] |
||
| 150 | train_x = x[0:num_samples - valid_set_len, :] |
||
| 151 | train_y = y[0:num_samples - valid_set_len, :] |
||
| 152 | _pretrain_criterion = MonitorBased(n_steps=pretrain_iter_num, |
||
| 153 | monitor_fn=self.get_encode_loss, |
||
| 154 | monitor_fn_args=(current_layer, valid_x, valid_y), |
||
| 155 | save_fn=tf.train.Saver().save, |
||
| 156 | save_fn_args=(session, layer_summaries_dir + '/best.ckpt')) |
||
| 157 | else: |
||
| 158 | logger.error('Wrong criterion %s specified.' % pretrain_criterion) |
||
| 159 | return |
||
| 160 | injector = BatchInjector(data_x=train_x, data_y=train_y, batch_size=batch_size) |
||
| 161 | i = 0 |
||
| 162 | View Code Duplication | while _pretrain_criterion.continue_learning(): |
|
| 163 | batch_x, batch_y = injector.next_batch() |
||
| 164 | if summaries_dir is not None and (i % summary_interval == 0): |
||
| 165 | summary, loss = session.run( |
||
| 166 | [current_layer.merged, current_layer.encode_loss], |
||
| 167 | feed_dict={self.x: x, self.y_: y} |
||
| 168 | ) |
||
| 169 | train_writer.add_summary(summary, i) |
||
| 170 | logger.info('Pre-training Layer %d, Step %d, training loss %g' % (j, i, loss)) |
||
| 171 | if test_x is not None and test_y is not None: |
||
| 172 | summary, loss = session.run( |
||
| 173 | [current_layer.merged, current_layer.encode_loss], |
||
| 174 | feed_dict={self.x: test_x, self.y_: test_y} |
||
| 175 | ) |
||
| 176 | test_writer.add_summary(summary, i) |
||
| 177 | logger.info('Pre-training Layer %d, Step %d, test loss %g' % (j, i, loss)) |
||
| 178 | if pretrain_criterion == 'monitor_based': |
||
| 179 | summary, loss = session.run( |
||
| 180 | [current_layer.merged, current_layer.encode_loss], |
||
| 181 | feed_dict={self.x: valid_x, self.y_: valid_y} |
||
| 182 | ) |
||
| 183 | valid_writer.add_summary(summary, i) |
||
| 184 | logger.info('Pre-training Layer %d, Step %d, valid loss %g' % (j, i, loss)) |
||
| 185 | _ = session.run(self.encode_opts[j], feed_dict={self.x: batch_x, self.y_: batch_y}) |
||
| 186 | i += 1 |
||
| 187 | if pretrain_criterion == 'monitor_based': |
||
| 188 | tf.train.Saver().restore(session, layer_summaries_dir + '/best.ckpt') |
||
| 189 | if summaries_dir is not None: |
||
| 190 | train_writer.close() |
||
| 191 | test_writer.close() |
||
| 192 | valid_writer.close() |
||
| 193 | # Finish all internal layer-by-layer pre-training |
||
| 194 | # Start fine tuning |
||
| 195 | if summaries_dir is not None: |
||
| 196 | tuning_summaries_dir = '%s/fine_tuning' % summaries_dir |
||
| 197 | train_writer = tf.summary.FileWriter(tuning_summaries_dir + '/train') |
||
| 198 | test_writer = tf.summary.FileWriter(tuning_summaries_dir + '/test') |
||
| 199 | valid_writer = tf.summary.FileWriter(tuning_summaries_dir + '/valid') |
||
| 200 | # Setup Stopping Criterion |
||
| 201 | if tuning_criterion == 'const_iterations': |
||
| 202 | _tuning_criterion = ConstIterations(num_iters=pretrain_iter_num) |
||
| 203 | train_x = x |
||
| 204 | train_y = y |
||
| 205 | elif tuning_criterion == 'monitor_based': |
||
| 206 | num_samples = x.shape[0] |
||
| 207 | valid_set_len = int(1 / 5 * num_samples) |
||
| 208 | valid_x = x[num_samples - valid_set_len:num_samples, :] |
||
| 209 | valid_y = y[num_samples - valid_set_len:num_samples, :] |
||
| 210 | train_x = x[0:num_samples - valid_set_len, :] |
||
| 211 | train_y = y[0:num_samples - valid_set_len, :] |
||
| 212 | _tuning_criterion = MonitorBased(n_steps=pretrain_iter_num, |
||
| 213 | monitor_fn=self.predict_accuracy, |
||
| 214 | monitor_fn_args=(valid_x, valid_y), |
||
| 215 | save_fn=tf.train.Saver().save, |
||
| 216 | save_fn_args=(session, tuning_summaries_dir + '/best.ckpt')) |
||
| 217 | else: |
||
| 218 | logger.error('Wrong criterion %s specified.' % pretrain_criterion) |
||
| 219 | return |
||
| 220 | injector = BatchInjector(data_x=train_x, data_y=train_y, batch_size=batch_size) |
||
| 221 | i = 0 |
||
| 222 | View Code Duplication | while _tuning_criterion.continue_learning(): |
|
| 223 | batch_x, batch_y = injector.next_batch() |
||
| 224 | if summaries_dir is not None and (i % summary_interval == 0): |
||
| 225 | summary, loss, accuracy = session.run([self.merged, self.loss, self.accuracy], |
||
| 226 | feed_dict={self.x: train_x, self.y_: train_y}) |
||
| 227 | train_writer.add_summary(summary, i) |
||
| 228 | logger.info('Fine-Tuning: Step %d, training accuracy %g, loss %g' % (i, accuracy, loss)) |
||
| 229 | if (test_x is not None) and (test_y is not None): |
||
| 230 | merged, accuracy = session.run([self.merged, self.accuracy], |
||
| 231 | feed_dict={self.x: test_x, self.y_: test_y}) |
||
| 232 | test_writer.add_summary(merged, i) |
||
| 233 | logger.info('Fine-Tuning: Step %d, test accuracy %g' % (i, accuracy)) |
||
| 234 | if tuning_criterion == 'monitor_based': |
||
| 235 | merged, accuracy = session.run([self.merged, self.accuracy], |
||
| 236 | feed_dict={self.x: valid_x, self.y_: valid_y}) |
||
| 237 | valid_writer.add_summary(merged, i) |
||
| 238 | logger.info('Fine-Tuning: Step %d, valid accuracy %g' % (i, accuracy)) |
||
| 239 | _ = session.run(self.fine_tuning, feed_dict={self.x: batch_x, self.y_: batch_y}) |
||
| 240 | i += 1 |
||
| 241 | if tuning_criterion == 'monitor_based': |
||
| 242 | tf.train.Saver().restore(session, tuning_summaries_dir + '/best.ckpt') |
||
| 243 | if summaries_dir is not None: |
||
| 244 | train_writer.close() |
||
| 245 | test_writer.close() |
||
| 246 | valid_writer.close() |
||
| 247 | |||
| 248 | def get_encode_loss(self, layer, x, y, session=None): |
||
| 249 | """Get encoder loss of layer specified |
||
| 250 | """ |
||
| 251 | if session is None: |
||
| 252 | if self.sess is None: |
||
| 253 | session = tf.Session() |
||
| 254 | self.sess = session |
||
| 255 | else: |
||
| 256 | session = self.sess |
||
| 257 | return session.run(layer.encode_loss, feed_dict={self.x: x, self.y_: y}) |
||
| 258 | |||
| 259 | def predict_accuracy(self, x, y, session=None): |
||
| 260 | """Get Accuracy given feature array and corresponding labels |
||
| 261 | """ |
||
| 262 | if session is None: |
||
| 263 | if self.sess is None: |
||
| 264 | session = tf.Session() |
||
| 265 | self.sess = session |
||
| 266 | else: |
||
| 267 | session = self.sess |
||
| 268 | return session.run(self.accuracy, feed_dict={self.x: x, self.y_: y}) |
||
| 269 | |||
| 270 | def predict_proba(self, x, session=None): |
||
| 271 | """Predict probability (Softmax) |
||
| 272 | """ |
||
| 273 | if session is None: |
||
| 274 | if self.sess is None: |
||
| 275 | session = tf.Session() |
||
| 276 | self.sess = session |
||
| 277 | else: |
||
| 278 | session = self.sess |
||
| 279 | return session.run(self.y, feed_dict={self.x: x}) |
||
| 280 | |||
| 281 | def predict(self, x, session=None): |
||
| 282 | if session is None: |
||
| 283 | if self.sess is None: |
||
| 284 | session = tf.Session() |
||
| 285 | self.sess = session |
||
| 286 | else: |
||
| 287 | session = self.sess |
||
| 288 | return session.run(self.y_class, feed_dict={self.x: x}) |
||
| 289 |