1 | import numpy as np |
||
2 | from hyperactive import Hyperactive |
||
3 | |||
4 | |||
5 | def objective_function(opt): |
||
6 | score = -opt["x1"] * opt["x1"] |
||
7 | return score |
||
8 | |||
9 | |||
10 | search_space = { |
||
11 | "x1": list(np.arange(-100, 101, 1)), |
||
12 | } |
||
13 | |||
14 | |||
15 | def test_initialize_warm_start_0(): |
||
16 | init = { |
||
17 | "x1": 0, |
||
18 | } |
||
19 | |||
20 | initialize = {"warm_start": [init]} |
||
21 | |||
22 | hyper = Hyperactive() |
||
23 | hyper.add_search( |
||
24 | objective_function, |
||
25 | search_space, |
||
26 | n_iter=1, |
||
27 | initialize=initialize, |
||
28 | ) |
||
29 | hyper.run() |
||
30 | |||
31 | assert abs(hyper.best_score(objective_function)) < 0.001 |
||
32 | |||
33 | |||
34 | def test_initialize_warm_start_1(): |
||
35 | search_space = { |
||
36 | "x1": list(np.arange(-10, 10, 1)), |
||
37 | } |
||
38 | init = { |
||
39 | "x1": -10, |
||
40 | } |
||
41 | |||
42 | initialize = {"warm_start": [init]} |
||
43 | |||
44 | hyper = Hyperactive() |
||
45 | hyper.add_search( |
||
46 | objective_function, |
||
47 | search_space, |
||
48 | n_iter=1, |
||
49 | initialize=initialize, |
||
50 | ) |
||
51 | hyper.run() |
||
52 | |||
53 | assert hyper.best_para(objective_function) == init |
||
54 | |||
55 | |||
56 | def test_initialize_vertices(): |
||
57 | initialize = {"vertices": 2} |
||
58 | |||
59 | hyper = Hyperactive() |
||
60 | hyper.add_search( |
||
61 | objective_function, |
||
62 | search_space, |
||
63 | n_iter=2, |
||
64 | initialize=initialize, |
||
65 | ) |
||
66 | hyper.run() |
||
67 | |||
68 | assert abs(hyper.best_score(objective_function)) - 10000 < 0.001 |
||
69 | |||
70 | |||
71 | View Code Duplication | def test_initialize_grid_0(): |
|
0 ignored issues
–
show
Duplication
introduced
by
![]() |
|||
72 | search_space = { |
||
73 | "x1": list(np.arange(-1, 2, 1)), |
||
74 | } |
||
75 | initialize = {"grid": 1} |
||
76 | |||
77 | hyper = Hyperactive() |
||
78 | hyper.add_search( |
||
79 | objective_function, |
||
80 | search_space, |
||
81 | n_iter=1, |
||
82 | initialize=initialize, |
||
83 | ) |
||
84 | hyper.run() |
||
85 | |||
86 | assert abs(hyper.best_score(objective_function)) < 0.001 |
||
87 | |||
88 | |||
89 | View Code Duplication | def test_initialize_grid_1(): |
|
0 ignored issues
–
show
|
|||
90 | search_space = { |
||
91 | "x1": list(np.arange(-2, 3, 1)), |
||
92 | } |
||
93 | |||
94 | initialize = {"grid": 1} |
||
95 | |||
96 | hyper = Hyperactive() |
||
97 | hyper.add_search( |
||
98 | objective_function, |
||
99 | search_space, |
||
100 | n_iter=1, |
||
101 | initialize=initialize, |
||
102 | ) |
||
103 | hyper.run() |
||
104 | |||
105 | assert abs(hyper.best_score(objective_function)) - 1 < 0.001 |
||
106 | |||
107 | |||
108 | def test_initialize_all_0(): |
||
109 | search_space = { |
||
110 | "x1": list(np.arange(-2, 3, 1)), |
||
111 | } |
||
112 | |||
113 | initialize = {"grid": 100, "vertices": 100, "random": 100} |
||
114 | |||
115 | hyper = Hyperactive() |
||
116 | hyper.add_search( |
||
117 | objective_function, |
||
118 | search_space, |
||
119 | n_iter=300, |
||
120 | initialize=initialize, |
||
121 | ) |
||
122 | hyper.run() |
||
123 |