1
|
|
|
import numpy as np |
2
|
|
|
from hyperactive import Hyperactive |
3
|
|
|
|
4
|
|
|
|
5
|
|
|
def objective_function(opt): |
6
|
|
|
score = -opt["x1"] * opt["x1"] |
7
|
|
|
return score |
8
|
|
|
|
9
|
|
|
|
10
|
|
|
search_space = { |
11
|
|
|
"x1": list(np.arange(-100, 101, 1)), |
12
|
|
|
} |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def test_initialize_warm_start_0(): |
16
|
|
|
init = { |
17
|
|
|
"x1": 0, |
18
|
|
|
} |
19
|
|
|
|
20
|
|
|
initialize = {"warm_start": [init]} |
21
|
|
|
|
22
|
|
|
hyper = Hyperactive() |
23
|
|
|
hyper.add_search( |
24
|
|
|
objective_function, |
25
|
|
|
search_space, |
26
|
|
|
n_iter=1, |
27
|
|
|
initialize=initialize, |
28
|
|
|
) |
29
|
|
|
hyper.run() |
30
|
|
|
|
31
|
|
|
assert abs(hyper.best_score(objective_function)) < 0.001 |
32
|
|
|
|
33
|
|
|
|
34
|
|
|
def test_initialize_warm_start_1(): |
35
|
|
|
search_space = { |
36
|
|
|
"x1": list(np.arange(-10, 10, 1)), |
37
|
|
|
} |
38
|
|
|
init = { |
39
|
|
|
"x1": -10, |
40
|
|
|
} |
41
|
|
|
|
42
|
|
|
initialize = {"warm_start": [init]} |
43
|
|
|
|
44
|
|
|
hyper = Hyperactive() |
45
|
|
|
hyper.add_search( |
46
|
|
|
objective_function, |
47
|
|
|
search_space, |
48
|
|
|
n_iter=1, |
49
|
|
|
initialize=initialize, |
50
|
|
|
) |
51
|
|
|
hyper.run() |
52
|
|
|
|
53
|
|
|
assert hyper.best_para(objective_function) == init |
54
|
|
|
|
55
|
|
|
|
56
|
|
|
def test_initialize_vertices(): |
57
|
|
|
initialize = {"vertices": 2} |
58
|
|
|
|
59
|
|
|
hyper = Hyperactive() |
60
|
|
|
hyper.add_search( |
61
|
|
|
objective_function, |
62
|
|
|
search_space, |
63
|
|
|
n_iter=2, |
64
|
|
|
initialize=initialize, |
65
|
|
|
) |
66
|
|
|
hyper.run() |
67
|
|
|
|
68
|
|
|
assert abs(hyper.best_score(objective_function)) - 10000 < 0.001 |
69
|
|
|
|
70
|
|
|
|
71
|
|
View Code Duplication |
def test_initialize_grid_0(): |
|
|
|
|
72
|
|
|
search_space = { |
73
|
|
|
"x1": list(np.arange(-1, 2, 1)), |
74
|
|
|
} |
75
|
|
|
initialize = {"grid": 1} |
76
|
|
|
|
77
|
|
|
hyper = Hyperactive() |
78
|
|
|
hyper.add_search( |
79
|
|
|
objective_function, |
80
|
|
|
search_space, |
81
|
|
|
n_iter=1, |
82
|
|
|
initialize=initialize, |
83
|
|
|
) |
84
|
|
|
hyper.run() |
85
|
|
|
|
86
|
|
|
assert abs(hyper.best_score(objective_function)) < 0.001 |
87
|
|
|
|
88
|
|
|
|
89
|
|
View Code Duplication |
def test_initialize_grid_1(): |
|
|
|
|
90
|
|
|
search_space = { |
91
|
|
|
"x1": list(np.arange(-2, 3, 1)), |
92
|
|
|
} |
93
|
|
|
|
94
|
|
|
initialize = {"grid": 1} |
95
|
|
|
|
96
|
|
|
hyper = Hyperactive() |
97
|
|
|
hyper.add_search( |
98
|
|
|
objective_function, |
99
|
|
|
search_space, |
100
|
|
|
n_iter=1, |
101
|
|
|
initialize=initialize, |
102
|
|
|
) |
103
|
|
|
hyper.run() |
104
|
|
|
|
105
|
|
|
assert abs(hyper.best_score(objective_function)) - 1 < 0.001 |
106
|
|
|
|
107
|
|
|
|
108
|
|
|
def test_initialize_all_0(): |
109
|
|
|
search_space = { |
110
|
|
|
"x1": list(np.arange(-2, 3, 1)), |
111
|
|
|
} |
112
|
|
|
|
113
|
|
|
initialize = {"grid": 100, "vertices": 100, "random": 100} |
114
|
|
|
|
115
|
|
|
hyper = Hyperactive() |
116
|
|
|
hyper.add_search( |
117
|
|
|
objective_function, |
118
|
|
|
search_space, |
119
|
|
|
n_iter=300, |
120
|
|
|
initialize=initialize, |
121
|
|
|
) |
122
|
|
|
hyper.run() |
123
|
|
|
|