1 | import time |
||
2 | import pytest |
||
3 | import numpy as np |
||
4 | from sklearn.datasets import load_breast_cancer |
||
5 | from sklearn.model_selection import cross_val_score |
||
6 | from sklearn.tree import DecisionTreeClassifier |
||
7 | |||
8 | from hyperactive import Hyperactive |
||
9 | from hyperactive.optimizers import ( |
||
10 | RandomSearchOptimizer, |
||
11 | HillClimbingOptimizer, |
||
12 | ) |
||
13 | |||
14 | |||
15 | def objective_function(para): |
||
16 | score = -para["x1"] * para["x1"] |
||
17 | return score |
||
18 | |||
19 | |||
20 | search_space = { |
||
21 | "x1": list(np.arange(0, 100000, 0.1)), |
||
22 | } |
||
23 | |||
24 | |||
25 | def test_early_stop_0(): |
||
26 | early_stopping = { |
||
27 | "n_iter_no_change": 5, |
||
28 | "tol_abs": 0.1, |
||
29 | "tol_rel": 0.1, |
||
30 | } |
||
31 | |||
32 | hyper = Hyperactive() |
||
33 | hyper.add_search( |
||
34 | objective_function, |
||
35 | search_space, |
||
36 | n_iter=1000, |
||
37 | initialize={"warm_start": [{"x1": 0}]}, |
||
38 | early_stopping=early_stopping, |
||
39 | ) |
||
40 | hyper.run() |
||
41 | |||
42 | |||
43 | def test_early_stop_1(): |
||
44 | early_stopping = { |
||
45 | "n_iter_no_change": 5, |
||
46 | "tol_abs": None, |
||
47 | "tol_rel": 5, |
||
48 | } |
||
49 | |||
50 | hyper = Hyperactive() |
||
51 | hyper.add_search( |
||
52 | objective_function, |
||
53 | search_space, |
||
54 | n_iter=1000, |
||
55 | initialize={"warm_start": [{"x1": 0}]}, |
||
56 | early_stopping=early_stopping, |
||
57 | ) |
||
58 | hyper.run() |
||
59 | |||
60 | |||
61 | def test_early_stop_2(): |
||
62 | early_stopping = { |
||
63 | "n_iter_no_change": 5, |
||
64 | "tol_abs": 0.1, |
||
65 | "tol_rel": None, |
||
66 | } |
||
67 | |||
68 | hyper = Hyperactive() |
||
69 | hyper.add_search( |
||
70 | objective_function, |
||
71 | search_space, |
||
72 | n_iter=1000, |
||
73 | initialize={"warm_start": [{"x1": 0}]}, |
||
74 | early_stopping=early_stopping, |
||
75 | ) |
||
76 | hyper.run() |
||
77 | |||
78 | |||
79 | def test_early_stop_3(): |
||
80 | def objective_function(para): |
||
81 | score = -para["x1"] * para["x1"] |
||
82 | return score |
||
83 | |||
84 | search_space = { |
||
85 | "x1": list(np.arange(0, 100, 0.1)), |
||
86 | } |
||
87 | |||
88 | n_iter_no_change = 5 |
||
89 | early_stopping = { |
||
90 | "n_iter_no_change": n_iter_no_change, |
||
91 | } |
||
92 | |||
93 | hyper = Hyperactive() |
||
94 | hyper.add_search( |
||
95 | objective_function, |
||
96 | search_space, |
||
97 | n_iter=100000, |
||
98 | initialize={"warm_start": [{"x1": 0}]}, |
||
99 | early_stopping=early_stopping, |
||
100 | ) |
||
101 | hyper.run() |
||
102 | |||
103 | search_data = hyper.search_data(objective_function) |
||
104 | n_performed_iter = len(search_data) |
||
105 | |||
106 | print("\n n_performed_iter \n", n_performed_iter) |
||
107 | print("\n n_iter_no_change \n", n_iter_no_change) |
||
108 | |||
109 | assert n_performed_iter == (n_iter_no_change + 1) |
||
110 | |||
111 | |||
112 | View Code Duplication | def test_early_stop_4(): |
|
0 ignored issues
–
show
Duplication
introduced
by
![]() |
|||
113 | def objective_function(para): |
||
114 | return para["x1"] |
||
115 | |||
116 | search_space = { |
||
117 | "x1": list(np.arange(0, 100, 0.1)), |
||
118 | } |
||
119 | |||
120 | n_iter_no_change = 5 |
||
121 | early_stopping = { |
||
122 | "n_iter_no_change": 5, |
||
123 | "tol_abs": 0.1, |
||
124 | "tol_rel": None, |
||
125 | } |
||
126 | |||
127 | start1 = {"x1": 0} |
||
128 | start2 = {"x1": 0.1} |
||
129 | start3 = {"x1": 0.2} |
||
130 | start4 = {"x1": 0.3} |
||
131 | start5 = {"x1": 0.4} |
||
132 | |||
133 | warm_start_l = [ |
||
134 | start1, |
||
135 | start1, |
||
136 | start1, |
||
137 | start1, |
||
138 | start1, |
||
139 | start2, |
||
140 | start2, |
||
141 | start2, |
||
142 | start3, |
||
143 | start3, |
||
144 | start3, |
||
145 | start4, |
||
146 | start4, |
||
147 | start4, |
||
148 | start5, |
||
149 | start5, |
||
150 | start5, |
||
151 | ] |
||
152 | n_iter = len(warm_start_l) |
||
153 | |||
154 | hyper = Hyperactive() |
||
155 | hyper.add_search( |
||
156 | objective_function, |
||
157 | search_space, |
||
158 | n_iter=n_iter, |
||
159 | initialize={"warm_start": warm_start_l}, |
||
160 | early_stopping=early_stopping, |
||
161 | ) |
||
162 | hyper.run() |
||
163 | |||
164 | search_data = hyper.search_data(objective_function) |
||
165 | n_performed_iter = len(search_data) |
||
166 | |||
167 | print("\n n_performed_iter \n", n_performed_iter) |
||
168 | print("\n n_iter_no_change \n", n_iter_no_change) |
||
169 | |||
170 | assert n_performed_iter == n_iter |
||
171 | |||
172 | |||
173 | View Code Duplication | def test_early_stop_5(): |
|
0 ignored issues
–
show
|
|||
174 | def objective_function(para): |
||
175 | return para["x1"] |
||
176 | |||
177 | search_space = { |
||
178 | "x1": list(np.arange(0, 100, 0.01)), |
||
179 | } |
||
180 | |||
181 | n_iter_no_change = 5 |
||
182 | early_stopping = { |
||
183 | "n_iter_no_change": n_iter_no_change, |
||
184 | "tol_abs": 0.1, |
||
185 | "tol_rel": None, |
||
186 | } |
||
187 | |||
188 | start1 = {"x1": 0} |
||
189 | start2 = {"x1": 0.09} |
||
190 | start3 = {"x1": 0.20} |
||
191 | |||
192 | warm_start_l = [ |
||
193 | start1, |
||
194 | start1, |
||
195 | start1, |
||
196 | start1, |
||
197 | start1, |
||
198 | start2, |
||
199 | start2, |
||
200 | start2, |
||
201 | start3, |
||
202 | start3, |
||
203 | start3, |
||
204 | ] |
||
205 | n_iter = len(warm_start_l) |
||
206 | |||
207 | hyper = Hyperactive() |
||
208 | hyper.add_search( |
||
209 | objective_function, |
||
210 | search_space, |
||
211 | n_iter=n_iter, |
||
212 | initialize={"warm_start": warm_start_l}, |
||
213 | early_stopping=early_stopping, |
||
214 | ) |
||
215 | hyper.run() |
||
216 | |||
217 | search_data = hyper.search_data(objective_function) |
||
218 | n_performed_iter = len(search_data) |
||
219 | |||
220 | print("\n n_performed_iter \n", n_performed_iter) |
||
221 | print("\n n_iter_no_change \n", n_iter_no_change) |
||
222 | |||
223 | assert n_performed_iter == (n_iter_no_change + 1) |
||
224 | |||
225 | |||
226 | View Code Duplication | def test_early_stop_6(): |
|
0 ignored issues
–
show
|
|||
227 | def objective_function(para): |
||
228 | return para["x1"] |
||
229 | |||
230 | search_space = { |
||
231 | "x1": list(np.arange(0, 100, 0.01)), |
||
232 | } |
||
233 | |||
234 | n_iter_no_change = 5 |
||
235 | early_stopping = { |
||
236 | "n_iter_no_change": 5, |
||
237 | "tol_abs": None, |
||
238 | "tol_rel": 10, |
||
239 | } |
||
240 | |||
241 | start1 = {"x1": 1} |
||
242 | start2 = {"x1": 1.1} |
||
243 | start3 = {"x1": 1.22} |
||
244 | start4 = {"x1": 1.35} |
||
245 | start5 = {"x1": 1.48} |
||
246 | |||
247 | warm_start_l = [ |
||
248 | start1, |
||
249 | start1, |
||
250 | start1, |
||
251 | start1, |
||
252 | start1, |
||
253 | start2, |
||
254 | start2, |
||
255 | start2, |
||
256 | start3, |
||
257 | start3, |
||
258 | start3, |
||
259 | start4, |
||
260 | start4, |
||
261 | start4, |
||
262 | start5, |
||
263 | start5, |
||
264 | start5, |
||
265 | ] |
||
266 | n_iter = len(warm_start_l) |
||
267 | |||
268 | hyper = Hyperactive() |
||
269 | hyper.add_search( |
||
270 | objective_function, |
||
271 | search_space, |
||
272 | n_iter=n_iter, |
||
273 | initialize={"warm_start": warm_start_l}, |
||
274 | early_stopping=early_stopping, |
||
275 | ) |
||
276 | hyper.run() |
||
277 | |||
278 | search_data = hyper.search_data(objective_function) |
||
279 | n_performed_iter = len(search_data) |
||
280 | |||
281 | print("\n n_performed_iter \n", n_performed_iter) |
||
282 | print("\n n_iter_no_change \n", n_iter_no_change) |
||
283 | |||
284 | assert n_performed_iter == n_iter |
||
285 | |||
286 | |||
287 | View Code Duplication | def test_early_stop_7(): |
|
0 ignored issues
–
show
|
|||
288 | def objective_function(para): |
||
289 | return para["x1"] |
||
290 | |||
291 | search_space = { |
||
292 | "x1": list(np.arange(0, 100, 0.01)), |
||
293 | } |
||
294 | |||
295 | n_iter_no_change = 5 |
||
296 | early_stopping = { |
||
297 | "n_iter_no_change": n_iter_no_change, |
||
298 | "tol_abs": None, |
||
299 | "tol_rel": 10, |
||
300 | } |
||
301 | |||
302 | start1 = {"x1": 1} |
||
303 | start2 = {"x1": 1.09} |
||
304 | start3 = {"x1": 1.20} |
||
305 | |||
306 | warm_start_l = [ |
||
307 | start1, |
||
308 | start1, |
||
309 | start1, |
||
310 | start1, |
||
311 | start1, |
||
312 | start2, |
||
313 | start2, |
||
314 | start2, |
||
315 | start3, |
||
316 | start3, |
||
317 | start3, |
||
318 | ] |
||
319 | n_iter = len(warm_start_l) |
||
320 | |||
321 | hyper = Hyperactive() |
||
322 | hyper.add_search( |
||
323 | objective_function, |
||
324 | search_space, |
||
325 | n_iter=n_iter, |
||
326 | initialize={"warm_start": warm_start_l}, |
||
327 | early_stopping=early_stopping, |
||
328 | ) |
||
329 | hyper.run() |
||
330 | |||
331 | search_data = hyper.search_data(objective_function) |
||
332 | n_performed_iter = len(search_data) |
||
333 | |||
334 | print("\n n_performed_iter \n", n_performed_iter) |
||
335 | print("\n n_iter_no_change \n", n_iter_no_change) |
||
336 | |||
337 | assert n_performed_iter == (n_iter_no_change + 1) |
||
338 |