1
|
|
|
import time |
2
|
|
|
import pytest |
3
|
|
|
import numpy as np |
4
|
|
|
from sklearn.datasets import load_breast_cancer |
5
|
|
|
from sklearn.model_selection import cross_val_score |
6
|
|
|
from sklearn.tree import DecisionTreeClassifier |
7
|
|
|
|
8
|
|
|
from hyperactive import Hyperactive |
9
|
|
|
from hyperactive.optimizers import ( |
10
|
|
|
RandomSearchOptimizer, |
11
|
|
|
HillClimbingOptimizer, |
12
|
|
|
) |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
def objective_function(para): |
16
|
|
|
score = -para["x1"] * para["x1"] |
17
|
|
|
return score |
18
|
|
|
|
19
|
|
|
|
20
|
|
|
search_space = { |
21
|
|
|
"x1": list(np.arange(0, 100000, 0.1)), |
22
|
|
|
} |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def test_early_stop_0(): |
26
|
|
|
early_stopping = { |
27
|
|
|
"n_iter_no_change": 5, |
28
|
|
|
"tol_abs": 0.1, |
29
|
|
|
"tol_rel": 0.1, |
30
|
|
|
} |
31
|
|
|
|
32
|
|
|
hyper = Hyperactive() |
33
|
|
|
hyper.add_search( |
34
|
|
|
objective_function, |
35
|
|
|
search_space, |
36
|
|
|
n_iter=1000, |
37
|
|
|
initialize={"warm_start": [{"x1": 0}]}, |
38
|
|
|
early_stopping=early_stopping, |
39
|
|
|
) |
40
|
|
|
hyper.run() |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
def test_early_stop_1(): |
44
|
|
|
early_stopping = { |
45
|
|
|
"n_iter_no_change": 5, |
46
|
|
|
"tol_abs": None, |
47
|
|
|
"tol_rel": 5, |
48
|
|
|
} |
49
|
|
|
|
50
|
|
|
hyper = Hyperactive() |
51
|
|
|
hyper.add_search( |
52
|
|
|
objective_function, |
53
|
|
|
search_space, |
54
|
|
|
n_iter=1000, |
55
|
|
|
initialize={"warm_start": [{"x1": 0}]}, |
56
|
|
|
early_stopping=early_stopping, |
57
|
|
|
) |
58
|
|
|
hyper.run() |
59
|
|
|
|
60
|
|
|
|
61
|
|
|
def test_early_stop_2(): |
62
|
|
|
early_stopping = { |
63
|
|
|
"n_iter_no_change": 5, |
64
|
|
|
"tol_abs": 0.1, |
65
|
|
|
"tol_rel": None, |
66
|
|
|
} |
67
|
|
|
|
68
|
|
|
hyper = Hyperactive() |
69
|
|
|
hyper.add_search( |
70
|
|
|
objective_function, |
71
|
|
|
search_space, |
72
|
|
|
n_iter=1000, |
73
|
|
|
initialize={"warm_start": [{"x1": 0}]}, |
74
|
|
|
early_stopping=early_stopping, |
75
|
|
|
) |
76
|
|
|
hyper.run() |
77
|
|
|
|
78
|
|
|
|
79
|
|
|
def test_early_stop_3(): |
80
|
|
|
def objective_function(para): |
81
|
|
|
score = -para["x1"] * para["x1"] |
82
|
|
|
return score |
83
|
|
|
|
84
|
|
|
search_space = { |
85
|
|
|
"x1": list(np.arange(0, 100, 0.1)), |
86
|
|
|
} |
87
|
|
|
|
88
|
|
|
n_iter_no_change = 5 |
89
|
|
|
early_stopping = { |
90
|
|
|
"n_iter_no_change": n_iter_no_change, |
91
|
|
|
} |
92
|
|
|
|
93
|
|
|
hyper = Hyperactive() |
94
|
|
|
hyper.add_search( |
95
|
|
|
objective_function, |
96
|
|
|
search_space, |
97
|
|
|
n_iter=100000, |
98
|
|
|
initialize={"warm_start": [{"x1": 0}]}, |
99
|
|
|
early_stopping=early_stopping, |
100
|
|
|
) |
101
|
|
|
hyper.run() |
102
|
|
|
|
103
|
|
|
search_data = hyper.search_data(objective_function) |
104
|
|
|
n_performed_iter = len(search_data) |
105
|
|
|
|
106
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
107
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
108
|
|
|
|
109
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
110
|
|
|
|
111
|
|
|
|
112
|
|
View Code Duplication |
def test_early_stop_4(): |
|
|
|
|
113
|
|
|
def objective_function(para): |
114
|
|
|
return para["x1"] |
115
|
|
|
|
116
|
|
|
search_space = { |
117
|
|
|
"x1": list(np.arange(0, 100, 0.1)), |
118
|
|
|
} |
119
|
|
|
|
120
|
|
|
n_iter_no_change = 5 |
121
|
|
|
early_stopping = { |
122
|
|
|
"n_iter_no_change": 5, |
123
|
|
|
"tol_abs": 0.1, |
124
|
|
|
"tol_rel": None, |
125
|
|
|
} |
126
|
|
|
|
127
|
|
|
start1 = {"x1": 0} |
128
|
|
|
start2 = {"x1": 0.1} |
129
|
|
|
start3 = {"x1": 0.2} |
130
|
|
|
start4 = {"x1": 0.3} |
131
|
|
|
start5 = {"x1": 0.4} |
132
|
|
|
|
133
|
|
|
warm_start_l = [ |
134
|
|
|
start1, |
135
|
|
|
start1, |
136
|
|
|
start1, |
137
|
|
|
start1, |
138
|
|
|
start1, |
139
|
|
|
start2, |
140
|
|
|
start2, |
141
|
|
|
start2, |
142
|
|
|
start3, |
143
|
|
|
start3, |
144
|
|
|
start3, |
145
|
|
|
start4, |
146
|
|
|
start4, |
147
|
|
|
start4, |
148
|
|
|
start5, |
149
|
|
|
start5, |
150
|
|
|
start5, |
151
|
|
|
] |
152
|
|
|
n_iter = len(warm_start_l) |
153
|
|
|
|
154
|
|
|
hyper = Hyperactive() |
155
|
|
|
hyper.add_search( |
156
|
|
|
objective_function, |
157
|
|
|
search_space, |
158
|
|
|
n_iter=n_iter, |
159
|
|
|
initialize={"warm_start": warm_start_l}, |
160
|
|
|
early_stopping=early_stopping, |
161
|
|
|
) |
162
|
|
|
hyper.run() |
163
|
|
|
|
164
|
|
|
search_data = hyper.search_data(objective_function) |
165
|
|
|
n_performed_iter = len(search_data) |
166
|
|
|
|
167
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
168
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
169
|
|
|
|
170
|
|
|
assert n_performed_iter == n_iter |
171
|
|
|
|
172
|
|
|
|
173
|
|
View Code Duplication |
def test_early_stop_5(): |
|
|
|
|
174
|
|
|
def objective_function(para): |
175
|
|
|
return para["x1"] |
176
|
|
|
|
177
|
|
|
search_space = { |
178
|
|
|
"x1": list(np.arange(0, 100, 0.01)), |
179
|
|
|
} |
180
|
|
|
|
181
|
|
|
n_iter_no_change = 5 |
182
|
|
|
early_stopping = { |
183
|
|
|
"n_iter_no_change": n_iter_no_change, |
184
|
|
|
"tol_abs": 0.1, |
185
|
|
|
"tol_rel": None, |
186
|
|
|
} |
187
|
|
|
|
188
|
|
|
start1 = {"x1": 0} |
189
|
|
|
start2 = {"x1": 0.09} |
190
|
|
|
start3 = {"x1": 0.20} |
191
|
|
|
|
192
|
|
|
warm_start_l = [ |
193
|
|
|
start1, |
194
|
|
|
start1, |
195
|
|
|
start1, |
196
|
|
|
start1, |
197
|
|
|
start1, |
198
|
|
|
start2, |
199
|
|
|
start2, |
200
|
|
|
start2, |
201
|
|
|
start3, |
202
|
|
|
start3, |
203
|
|
|
start3, |
204
|
|
|
] |
205
|
|
|
n_iter = len(warm_start_l) |
206
|
|
|
|
207
|
|
|
hyper = Hyperactive() |
208
|
|
|
hyper.add_search( |
209
|
|
|
objective_function, |
210
|
|
|
search_space, |
211
|
|
|
n_iter=n_iter, |
212
|
|
|
initialize={"warm_start": warm_start_l}, |
213
|
|
|
early_stopping=early_stopping, |
214
|
|
|
) |
215
|
|
|
hyper.run() |
216
|
|
|
|
217
|
|
|
search_data = hyper.search_data(objective_function) |
218
|
|
|
n_performed_iter = len(search_data) |
219
|
|
|
|
220
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
221
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
222
|
|
|
|
223
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
224
|
|
|
|
225
|
|
|
|
226
|
|
View Code Duplication |
def test_early_stop_6(): |
|
|
|
|
227
|
|
|
def objective_function(para): |
228
|
|
|
return para["x1"] |
229
|
|
|
|
230
|
|
|
search_space = { |
231
|
|
|
"x1": list(np.arange(0, 100, 0.01)), |
232
|
|
|
} |
233
|
|
|
|
234
|
|
|
n_iter_no_change = 5 |
235
|
|
|
early_stopping = { |
236
|
|
|
"n_iter_no_change": 5, |
237
|
|
|
"tol_abs": None, |
238
|
|
|
"tol_rel": 10, |
239
|
|
|
} |
240
|
|
|
|
241
|
|
|
start1 = {"x1": 1} |
242
|
|
|
start2 = {"x1": 1.1} |
243
|
|
|
start3 = {"x1": 1.22} |
244
|
|
|
start4 = {"x1": 1.35} |
245
|
|
|
start5 = {"x1": 1.48} |
246
|
|
|
|
247
|
|
|
warm_start_l = [ |
248
|
|
|
start1, |
249
|
|
|
start1, |
250
|
|
|
start1, |
251
|
|
|
start1, |
252
|
|
|
start1, |
253
|
|
|
start2, |
254
|
|
|
start2, |
255
|
|
|
start2, |
256
|
|
|
start3, |
257
|
|
|
start3, |
258
|
|
|
start3, |
259
|
|
|
start4, |
260
|
|
|
start4, |
261
|
|
|
start4, |
262
|
|
|
start5, |
263
|
|
|
start5, |
264
|
|
|
start5, |
265
|
|
|
] |
266
|
|
|
n_iter = len(warm_start_l) |
267
|
|
|
|
268
|
|
|
hyper = Hyperactive() |
269
|
|
|
hyper.add_search( |
270
|
|
|
objective_function, |
271
|
|
|
search_space, |
272
|
|
|
n_iter=n_iter, |
273
|
|
|
initialize={"warm_start": warm_start_l}, |
274
|
|
|
early_stopping=early_stopping, |
275
|
|
|
) |
276
|
|
|
hyper.run() |
277
|
|
|
|
278
|
|
|
search_data = hyper.search_data(objective_function) |
279
|
|
|
n_performed_iter = len(search_data) |
280
|
|
|
|
281
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
282
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
283
|
|
|
|
284
|
|
|
assert n_performed_iter == n_iter |
285
|
|
|
|
286
|
|
|
|
287
|
|
View Code Duplication |
def test_early_stop_7(): |
|
|
|
|
288
|
|
|
def objective_function(para): |
289
|
|
|
return para["x1"] |
290
|
|
|
|
291
|
|
|
search_space = { |
292
|
|
|
"x1": list(np.arange(0, 100, 0.01)), |
293
|
|
|
} |
294
|
|
|
|
295
|
|
|
n_iter_no_change = 5 |
296
|
|
|
early_stopping = { |
297
|
|
|
"n_iter_no_change": n_iter_no_change, |
298
|
|
|
"tol_abs": None, |
299
|
|
|
"tol_rel": 10, |
300
|
|
|
} |
301
|
|
|
|
302
|
|
|
start1 = {"x1": 1} |
303
|
|
|
start2 = {"x1": 1.09} |
304
|
|
|
start3 = {"x1": 1.20} |
305
|
|
|
|
306
|
|
|
warm_start_l = [ |
307
|
|
|
start1, |
308
|
|
|
start1, |
309
|
|
|
start1, |
310
|
|
|
start1, |
311
|
|
|
start1, |
312
|
|
|
start2, |
313
|
|
|
start2, |
314
|
|
|
start2, |
315
|
|
|
start3, |
316
|
|
|
start3, |
317
|
|
|
start3, |
318
|
|
|
] |
319
|
|
|
n_iter = len(warm_start_l) |
320
|
|
|
|
321
|
|
|
hyper = Hyperactive() |
322
|
|
|
hyper.add_search( |
323
|
|
|
objective_function, |
324
|
|
|
search_space, |
325
|
|
|
n_iter=n_iter, |
326
|
|
|
initialize={"warm_start": warm_start_l}, |
327
|
|
|
early_stopping=early_stopping, |
328
|
|
|
) |
329
|
|
|
hyper.run() |
330
|
|
|
|
331
|
|
|
search_data = hyper.search_data(objective_function) |
332
|
|
|
n_performed_iter = len(search_data) |
333
|
|
|
|
334
|
|
|
print("\n n_performed_iter \n", n_performed_iter) |
335
|
|
|
print("\n n_iter_no_change \n", n_iter_no_change) |
336
|
|
|
|
337
|
|
|
assert n_performed_iter == (n_iter_no_change + 1) |
338
|
|
|
|