|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import os |
|
6
|
|
|
import sys |
|
7
|
|
|
import time |
|
8
|
|
|
import numpy as np |
|
9
|
|
|
import pandas as pd |
|
10
|
|
|
import streamlit as st |
|
11
|
|
|
import plotly.express as px |
|
12
|
|
|
import matplotlib.pyplot as plt |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
color_scale = px.colors.sequential.Jet |
|
16
|
|
|
|
|
17
|
|
|
|
|
18
|
|
|
def parallel_coordinates_plotly(*args, plotly_width=1200, plotly_height=540, **kwargs): |
|
19
|
|
|
fig = px.parallel_coordinates(*args, **kwargs, color_continuous_scale=color_scale) |
|
20
|
|
|
fig.update_layout(autosize=False, width=plotly_width, height=plotly_height) |
|
21
|
|
|
|
|
22
|
|
|
return fig |
|
23
|
|
|
|
|
24
|
|
|
|
|
25
|
|
|
def filter_data(filter, df, columns): |
|
26
|
|
|
if len(df) > 1: |
|
27
|
|
|
for column in columns: |
|
28
|
|
|
if column not in list(filter["parameter"]): |
|
29
|
|
|
continue |
|
30
|
|
|
|
|
31
|
|
|
filter_ = filter[filter["parameter"] == column] |
|
32
|
|
|
lower, upper = ( |
|
33
|
|
|
filter_["lower bound"].values[0], |
|
34
|
|
|
filter_["upper bound"].values[0], |
|
35
|
|
|
) |
|
36
|
|
|
|
|
37
|
|
|
col_data = df[column] |
|
38
|
|
|
|
|
39
|
|
|
if lower == "lower": |
|
40
|
|
|
lower = np.min(col_data) |
|
41
|
|
|
else: |
|
42
|
|
|
lower = float(lower) |
|
43
|
|
|
|
|
44
|
|
|
if upper == "upper": |
|
45
|
|
|
upper = np.max(col_data) |
|
46
|
|
|
else: |
|
47
|
|
|
upper = float(upper) |
|
48
|
|
|
|
|
49
|
|
|
df = df[(df[column] >= lower) & (df[column] <= upper)] |
|
50
|
|
|
|
|
51
|
|
|
return df |
|
52
|
|
|
|
|
53
|
|
|
|
|
54
|
|
|
def main(): |
|
55
|
|
|
try: |
|
56
|
|
|
st.set_page_config(page_title="Hyperactive Progress Board", layout="wide") |
|
57
|
|
|
except: |
|
58
|
|
|
pass |
|
59
|
|
|
|
|
60
|
|
|
search_ids = sys.argv[1:] |
|
61
|
|
|
|
|
62
|
|
|
search_id_dict = {} |
|
63
|
|
|
for search_id in search_ids: |
|
64
|
|
|
search_id_dict[search_id] = {} |
|
65
|
|
|
|
|
66
|
|
|
progress_data_path = "./progress_data_" + search_id + ".csv~" |
|
67
|
|
|
filter_path = "./filter_" + search_id + ".csv" |
|
68
|
|
|
|
|
69
|
|
|
if os.path.isfile(progress_data_path): |
|
70
|
|
|
search_id_dict[search_id]["progress_data"] = pd.read_csv(progress_data_path) |
|
71
|
|
|
if os.path.isfile(filter_path): |
|
72
|
|
|
search_id_dict[search_id]["filter"] = pd.read_csv(filter_path) |
|
73
|
|
|
|
|
74
|
|
|
for search_id in search_id_dict.keys(): |
|
75
|
|
|
progress_data = search_id_dict[search_id]["progress_data"] |
|
76
|
|
|
filter = search_id_dict[search_id]["filter"] |
|
77
|
|
|
|
|
78
|
|
|
st.title(search_id) |
|
79
|
|
|
st.components.v1.html( |
|
80
|
|
|
"""<hr style="height:1px;border:none;color:#333;background-color:#333;" /> """, |
|
81
|
|
|
height=10, |
|
82
|
|
|
) |
|
83
|
|
|
|
|
84
|
|
|
col1, col2 = st.beta_columns([1, 2]) |
|
85
|
|
|
|
|
86
|
|
|
progress_data_f = progress_data[ |
|
87
|
|
|
~progress_data.isin([np.nan, np.inf, -np.inf]).any(1) |
|
88
|
|
|
] |
|
89
|
|
|
|
|
90
|
|
|
nth_iter = progress_data_f["nth_iter"] |
|
91
|
|
|
score_best = progress_data_f["score_best"] |
|
92
|
|
|
nth_process = list(progress_data_f["nth_process"]) |
|
93
|
|
|
|
|
94
|
|
|
if np.all(nth_process == nth_process[0]): |
|
95
|
|
|
fig, ax = plt.subplots() |
|
96
|
|
|
plt.plot(nth_iter, score_best) |
|
97
|
|
|
col1.pyplot(fig) |
|
98
|
|
|
else: |
|
99
|
|
|
fig, ax = plt.subplots() |
|
100
|
|
|
ax.set_xlabel("nth iteration") |
|
101
|
|
|
ax.set_ylabel("score") |
|
102
|
|
|
|
|
103
|
|
|
for i in np.unique(nth_process): |
|
104
|
|
|
nth_iter_p = nth_iter[nth_process == i] |
|
105
|
|
|
score_best_p = score_best[nth_process == i] |
|
106
|
|
|
plt.plot(nth_iter_p, score_best_p, label=str(i) + ". process") |
|
107
|
|
|
plt.legend() |
|
108
|
|
|
col1.pyplot(fig) |
|
109
|
|
|
|
|
110
|
|
|
progress_data_f.drop( |
|
111
|
|
|
["nth_iter", "score_best", "nth_process"], axis=1, inplace=True |
|
112
|
|
|
) |
|
113
|
|
|
prog_data_columns = list(progress_data_f.columns) |
|
114
|
|
|
|
|
115
|
|
|
progress_data_f = filter_data(filter, progress_data_f, prog_data_columns) |
|
116
|
|
|
|
|
117
|
|
|
# remove score |
|
118
|
|
|
prog_data_columns.remove("score") |
|
119
|
|
|
|
|
120
|
|
|
fig = parallel_coordinates_plotly( |
|
121
|
|
|
progress_data_f, dimensions=prog_data_columns, color="score" |
|
122
|
|
|
) |
|
123
|
|
|
col2.plotly_chart(fig) |
|
124
|
|
|
|
|
125
|
|
|
for _ in range(3): |
|
126
|
|
|
st.write(" ") |
|
127
|
|
|
|
|
128
|
|
|
time.sleep(1) |
|
129
|
|
|
st.experimental_rerun() |
|
130
|
|
|
|
|
131
|
|
|
|
|
132
|
|
|
if __name__ == "__main__": |
|
133
|
|
|
main() |
|
134
|
|
|
|