1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import os |
6
|
|
|
import sys |
7
|
|
|
import time |
8
|
|
|
import numpy as np |
9
|
|
|
import pandas as pd |
10
|
|
|
import streamlit as st |
11
|
|
|
import plotly.express as px |
12
|
|
|
import matplotlib.pyplot as plt |
13
|
|
|
|
14
|
|
|
|
15
|
|
|
color_scale = px.colors.sequential.Jet |
16
|
|
|
|
17
|
|
|
|
18
|
|
|
def parallel_coordinates_plotly(*args, plotly_width=1200, plotly_height=540, **kwargs): |
19
|
|
|
fig = px.parallel_coordinates(*args, **kwargs, color_continuous_scale=color_scale) |
20
|
|
|
fig.update_layout(autosize=False, width=plotly_width, height=plotly_height) |
21
|
|
|
|
22
|
|
|
return fig |
23
|
|
|
|
24
|
|
|
|
25
|
|
|
def filter_data(filter, df, columns): |
26
|
|
|
if len(df) > 1: |
27
|
|
|
for column in columns: |
28
|
|
|
if column not in list(filter["parameter"]): |
29
|
|
|
continue |
30
|
|
|
|
31
|
|
|
filter_ = filter[filter["parameter"] == column] |
32
|
|
|
lower, upper = ( |
33
|
|
|
filter_["lower bound"].values[0], |
34
|
|
|
filter_["upper bound"].values[0], |
35
|
|
|
) |
36
|
|
|
|
37
|
|
|
col_data = df[column] |
38
|
|
|
|
39
|
|
|
if lower == "lower": |
40
|
|
|
lower = np.min(col_data) |
41
|
|
|
else: |
42
|
|
|
lower = float(lower) |
43
|
|
|
|
44
|
|
|
if upper == "upper": |
45
|
|
|
upper = np.max(col_data) |
46
|
|
|
else: |
47
|
|
|
upper = float(upper) |
48
|
|
|
|
49
|
|
|
df = df[(df[column] >= lower) & (df[column] <= upper)] |
50
|
|
|
|
51
|
|
|
return df |
52
|
|
|
|
53
|
|
|
|
54
|
|
|
def main(): |
55
|
|
|
try: |
56
|
|
|
st.set_page_config(page_title="Hyperactive Progress Board", layout="wide") |
57
|
|
|
except: |
58
|
|
|
pass |
59
|
|
|
|
60
|
|
|
search_ids = sys.argv[1:] |
61
|
|
|
|
62
|
|
|
search_id_dict = {} |
63
|
|
|
for search_id in search_ids: |
64
|
|
|
search_id_dict[search_id] = {} |
65
|
|
|
|
66
|
|
|
progress_data_path = "./progress_data_" + search_id + ".csv~" |
67
|
|
|
filter_path = "./filter_" + search_id + ".csv" |
68
|
|
|
|
69
|
|
|
if os.path.isfile(progress_data_path): |
70
|
|
|
search_id_dict[search_id]["progress_data"] = pd.read_csv(progress_data_path) |
71
|
|
|
if os.path.isfile(filter_path): |
72
|
|
|
search_id_dict[search_id]["filter"] = pd.read_csv(filter_path) |
73
|
|
|
|
74
|
|
|
for search_id in search_id_dict.keys(): |
75
|
|
|
progress_data = search_id_dict[search_id]["progress_data"] |
76
|
|
|
filter = search_id_dict[search_id]["filter"] |
77
|
|
|
|
78
|
|
|
st.title(search_id) |
79
|
|
|
st.components.v1.html( |
80
|
|
|
"""<hr style="height:1px;border:none;color:#333;background-color:#333;" /> """, |
81
|
|
|
height=10, |
82
|
|
|
) |
83
|
|
|
|
84
|
|
|
col1, col2 = st.beta_columns([1, 2]) |
85
|
|
|
|
86
|
|
|
progress_data_f = progress_data[ |
87
|
|
|
~progress_data.isin([np.nan, np.inf, -np.inf]).any(1) |
88
|
|
|
] |
89
|
|
|
|
90
|
|
|
nth_iter = progress_data_f["nth_iter"] |
91
|
|
|
score_best = progress_data_f["score_best"] |
92
|
|
|
nth_process = list(progress_data_f["nth_process"]) |
93
|
|
|
|
94
|
|
|
if np.all(nth_process == nth_process[0]): |
95
|
|
|
fig, ax = plt.subplots() |
96
|
|
|
plt.plot(nth_iter, score_best) |
97
|
|
|
col1.pyplot(fig) |
98
|
|
|
else: |
99
|
|
|
fig, ax = plt.subplots() |
100
|
|
|
ax.set_xlabel("nth iteration") |
101
|
|
|
ax.set_ylabel("score") |
102
|
|
|
|
103
|
|
|
for i in np.unique(nth_process): |
104
|
|
|
nth_iter_p = nth_iter[nth_process == i] |
105
|
|
|
score_best_p = score_best[nth_process == i] |
106
|
|
|
plt.plot(nth_iter_p, score_best_p, label=str(i) + ". process") |
107
|
|
|
plt.legend() |
108
|
|
|
col1.pyplot(fig) |
109
|
|
|
|
110
|
|
|
progress_data_f.drop( |
111
|
|
|
["nth_iter", "score_best", "nth_process"], axis=1, inplace=True |
112
|
|
|
) |
113
|
|
|
prog_data_columns = list(progress_data_f.columns) |
114
|
|
|
|
115
|
|
|
progress_data_f = filter_data(filter, progress_data_f, prog_data_columns) |
116
|
|
|
|
117
|
|
|
# remove score |
118
|
|
|
prog_data_columns.remove("score") |
119
|
|
|
|
120
|
|
|
fig = parallel_coordinates_plotly( |
121
|
|
|
progress_data_f, dimensions=prog_data_columns, color="score" |
122
|
|
|
) |
123
|
|
|
col2.plotly_chart(fig) |
124
|
|
|
|
125
|
|
|
for _ in range(3): |
126
|
|
|
st.write(" ") |
127
|
|
|
|
128
|
|
|
time.sleep(1) |
129
|
|
|
st.experimental_rerun() |
130
|
|
|
|
131
|
|
|
|
132
|
|
|
if __name__ == "__main__": |
133
|
|
|
main() |
134
|
|
|
|