| 
                    1
                 | 
                                    
                                                     | 
                
                 | 
                from keras.nns import Sequential  | 
            
            
                                                        
            
                                    
            
            
                | 
                    2
                 | 
                                    
                                                     | 
                
                 | 
                from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Activation, Dropout  | 
            
            
                                                        
            
                                    
            
            
                | 
                    3
                 | 
                                    
                                                     | 
                
                 | 
                from keras.datasets import cifar10  | 
            
            
                                                        
            
                                    
            
            
                | 
                    4
                 | 
                                    
                                                     | 
                
                 | 
                from keras.utils import to_categorical  | 
            
            
                                                        
            
                                    
            
            
                | 
                    5
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    6
                 | 
                                    
                                                     | 
                
                 | 
                from hyperactive import Hyperactive  | 
            
            
                                                        
            
                                    
            
            
                | 
                    7
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    8
                 | 
                                    
                                                     | 
                
                 | 
                (X_train, y_train), (X_test, y_test) = cifar10.load_data()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    9
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    10
                 | 
                                    
                                                     | 
                
                 | 
                y_train = to_categorical(y_train, 10)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    11
                 | 
                                    
                                                     | 
                
                 | 
                y_test = to_categorical(y_test, 10)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    12
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    13
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    14
                 | 
                                    
                                                     | 
                
                 | 
                def conv1(nn):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    15
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Conv2D(32, (3, 3)))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    16
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Activation("relu")) | 
            
            
                                                        
            
                                    
            
            
                | 
                    17
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(MaxPooling2D(pool_size=(2, 2)))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    18
                 | 
                                    
                                                     | 
                
                 | 
                    return nn  | 
            
            
                                                        
            
                                    
            
            
                | 
                    19
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    20
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    21
                 | 
                                    
                                                     | 
                
                 | 
                def conv2(nn):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    22
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Conv2D(32, (3, 3)))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    23
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Activation("relu")) | 
            
            
                                                        
            
                                    
            
            
                | 
                    24
                 | 
                                    
                                                     | 
                
                 | 
                    return nn  | 
            
            
                                                        
            
                                    
            
            
                | 
                    25
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    26
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    27
                 | 
                                    
                                                     | 
                
                 | 
                def conv3(nn):  | 
            
            
                                                        
            
                                    
            
            
                | 
                    28
                 | 
                                    
                                                     | 
                
                 | 
                    return nn  | 
            
            
                                                        
            
                                    
            
            
                | 
                    29
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    30
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                                                    
                                                                                                        
            
            
                | 
                    31
                 | 
                                    
                                                     | 
                
                View Code Duplication | 
                def cnn(para, X_train, y_train):  | 
            
                            
                    | 
                        
                     | 
                     | 
                     | 
                    
                                                                                                    
                        
                         
                                                                                        
                                                                                     
                     | 
                
            
                                                        
            
                                    
            
            
                | 
                    32
                 | 
                                    
                                                     | 
                
                 | 
                    nn = Sequential()  | 
            
            
                                                        
            
                                    
            
            
                | 
                    33
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(  | 
            
            
                                                        
            
                                    
            
            
                | 
                    34
                 | 
                                    
                                                     | 
                
                 | 
                        Conv2D(para["filters.0"], (3, 3), padding="same", input_shape=X_train.shape[1:])  | 
            
            
                                                        
            
                                    
            
            
                | 
                    35
                 | 
                                    
                                                     | 
                
                 | 
                    )  | 
            
            
                                                        
            
                                    
            
            
                | 
                    36
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Activation("relu")) | 
            
            
                                                        
            
                                    
            
            
                | 
                    37
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Conv2D(para["filters.0"], (3, 3)))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    38
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Activation("relu")) | 
            
            
                                                        
            
                                    
            
            
                | 
                    39
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(MaxPooling2D(pool_size=(2, 2)))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    40
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Dropout(0.25))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    41
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    42
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Conv2D(para["filters.0"], (3, 3), padding="same"))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    43
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Activation("relu")) | 
            
            
                                                        
            
                                    
            
            
                | 
                    44
                 | 
                                    
                                                     | 
                
                 | 
                    nn = para["conv_layer.0"](nn)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    45
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Dropout(0.25))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    46
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    47
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Flatten())  | 
            
            
                                                        
            
                                    
            
            
                | 
                    48
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Dense(para["neurons.0"]))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    49
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Activation("relu")) | 
            
            
                                                        
            
                                    
            
            
                | 
                    50
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Dropout(0.5))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    51
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Dense(10))  | 
            
            
                                                        
            
                                    
            
            
                | 
                    52
                 | 
                                    
                                                     | 
                
                 | 
                    nn.add(Activation("softmax")) | 
            
            
                                                        
            
                                    
            
            
                | 
                    53
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    54
                 | 
                                    
                                                     | 
                
                 | 
                    nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])  | 
            
            
                                                        
            
                                    
            
            
                | 
                    55
                 | 
                                    
                                                     | 
                
                 | 
                    nn.fit(X_train, y_train, epochs=25, batch_size=128)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    56
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    57
                 | 
                                    
                                                     | 
                
                 | 
                    _, score = nn.evaluate(x=X_test, y=y_test)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    58
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    59
                 | 
                                    
                                                     | 
                
                 | 
                    return score  | 
            
            
                                                        
            
                                    
            
            
                | 
                    60
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    61
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    62
                 | 
                                    
                                                     | 
                
                 | 
                search_config = { | 
            
            
                                                        
            
                                    
            
            
                | 
                    63
                 | 
                                    
                                                     | 
                
                 | 
                    cnn: { | 
            
            
                                                        
            
                                    
            
            
                | 
                    64
                 | 
                                    
                                                     | 
                
                 | 
                        "conv_layer.0": [conv1, conv2, conv3],  | 
            
            
                                                        
            
                                    
            
            
                | 
                    65
                 | 
                                    
                                                     | 
                
                 | 
                        "filters.0": [16, 32, 64, 128],  | 
            
            
                                                        
            
                                    
            
            
                | 
                    66
                 | 
                                    
                                                     | 
                
                 | 
                        "neurons.0": range(100, 1000, 100),  | 
            
            
                                                        
            
                                    
            
            
                | 
                    67
                 | 
                                    
                                                     | 
                
                 | 
                    }  | 
            
            
                                                        
            
                                    
            
            
                | 
                    68
                 | 
                                    
                                                     | 
                
                 | 
                }  | 
            
            
                                                        
            
                                    
            
            
                | 
                    69
                 | 
                                    
                                                     | 
                
                 | 
                 | 
            
            
                                                        
            
                                    
            
            
                | 
                    70
                 | 
                                    
                                                     | 
                
                 | 
                opt = Hyperactive(X_train, y_train)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    71
                 | 
                                    
                                                     | 
                
                 | 
                opt.search(search_config, n_iter=5)  | 
            
            
                                                        
            
                                    
            
            
                | 
                    72
                 | 
                                    
                                                     | 
                
                 | 
                 |