Code Duplication    Length = 29-31 lines in 2 locations

examples/examples_v1.x.x/use_cases/cnn_structure.py 1 location

@@ 31-61 (lines=31) @@
28
    return model
29
30
31
def cnn(para, X_train, y_train):
32
    model = Sequential()
33
    model.add(
34
        Conv2D(para["filters.0"], (3, 3), padding="same", input_shape=X_train.shape[1:])
35
    )
36
    model.add(Activation("relu"))
37
    model.add(Conv2D(para["filters.0"], (3, 3)))
38
    model.add(Activation("relu"))
39
    model.add(MaxPooling2D(pool_size=(2, 2)))
40
    model.add(Dropout(0.25))
41
42
    model.add(Conv2D(para["filters.0"], (3, 3), padding="same"))
43
    model.add(Activation("relu"))
44
    model = para["conv_layer.0"](model)
45
    model.add(Dropout(0.25))
46
47
    model.add(Flatten())
48
    model.add(Dense(para["neurons.0"]))
49
    model.add(Activation("relu"))
50
    model.add(Dropout(0.5))
51
    model.add(Dense(10))
52
    model.add(Activation("softmax"))
53
54
    model.compile(
55
        optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]
56
    )
57
    model.fit(X_train, y_train, epochs=25, batch_size=128)
58
59
    _, score = model.evaluate(x=X_test, y=y_test)
60
61
    return score
62
63
64
search_config = {

examples/use_cases/NeuralArchitectureSearch.py 1 location

@@ 31-59 (lines=29) @@
28
    return nn
29
30
31
def cnn(para, X_train, y_train):
32
    nn = Sequential()
33
    nn.add(
34
        Conv2D(para["filters.0"], (3, 3), padding="same", input_shape=X_train.shape[1:])
35
    )
36
    nn.add(Activation("relu"))
37
    nn.add(Conv2D(para["filters.0"], (3, 3)))
38
    nn.add(Activation("relu"))
39
    nn.add(MaxPooling2D(pool_size=(2, 2)))
40
    nn.add(Dropout(0.25))
41
42
    nn.add(Conv2D(para["filters.0"], (3, 3), padding="same"))
43
    nn.add(Activation("relu"))
44
    nn = para["conv_layer.0"](nn)
45
    nn.add(Dropout(0.25))
46
47
    nn.add(Flatten())
48
    nn.add(Dense(para["neurons.0"]))
49
    nn.add(Activation("relu"))
50
    nn.add(Dropout(0.5))
51
    nn.add(Dense(10))
52
    nn.add(Activation("softmax"))
53
54
    nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
55
    nn.fit(X_train, y_train, epochs=25, batch_size=128)
56
57
    _, score = nn.evaluate(x=X_test, y=y_test)
58
59
    return score
60
61
62
search_config = {