| @@ 31-61 (lines=31) @@ | ||
| 28 | return model |
|
| 29 | ||
| 30 | ||
| 31 | def cnn(para, X_train, y_train): |
|
| 32 | model = Sequential() |
|
| 33 | model.add( |
|
| 34 | Conv2D(para["filters.0"], (3, 3), padding="same", input_shape=X_train.shape[1:]) |
|
| 35 | ) |
|
| 36 | model.add(Activation("relu")) |
|
| 37 | model.add(Conv2D(para["filters.0"], (3, 3))) |
|
| 38 | model.add(Activation("relu")) |
|
| 39 | model.add(MaxPooling2D(pool_size=(2, 2))) |
|
| 40 | model.add(Dropout(0.25)) |
|
| 41 | ||
| 42 | model.add(Conv2D(para["filters.0"], (3, 3), padding="same")) |
|
| 43 | model.add(Activation("relu")) |
|
| 44 | model = para["conv_layer.0"](model) |
|
| 45 | model.add(Dropout(0.25)) |
|
| 46 | ||
| 47 | model.add(Flatten()) |
|
| 48 | model.add(Dense(para["neurons.0"])) |
|
| 49 | model.add(Activation("relu")) |
|
| 50 | model.add(Dropout(0.5)) |
|
| 51 | model.add(Dense(10)) |
|
| 52 | model.add(Activation("softmax")) |
|
| 53 | ||
| 54 | model.compile( |
|
| 55 | optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"] |
|
| 56 | ) |
|
| 57 | model.fit(X_train, y_train, epochs=25, batch_size=128) |
|
| 58 | ||
| 59 | _, score = model.evaluate(x=X_test, y=y_test) |
|
| 60 | ||
| 61 | return score |
|
| 62 | ||
| 63 | ||
| 64 | search_config = { |
|
| @@ 31-59 (lines=29) @@ | ||
| 28 | return nn |
|
| 29 | ||
| 30 | ||
| 31 | def cnn(para, X_train, y_train): |
|
| 32 | nn = Sequential() |
|
| 33 | nn.add( |
|
| 34 | Conv2D(para["filters.0"], (3, 3), padding="same", input_shape=X_train.shape[1:]) |
|
| 35 | ) |
|
| 36 | nn.add(Activation("relu")) |
|
| 37 | nn.add(Conv2D(para["filters.0"], (3, 3))) |
|
| 38 | nn.add(Activation("relu")) |
|
| 39 | nn.add(MaxPooling2D(pool_size=(2, 2))) |
|
| 40 | nn.add(Dropout(0.25)) |
|
| 41 | ||
| 42 | nn.add(Conv2D(para["filters.0"], (3, 3), padding="same")) |
|
| 43 | nn.add(Activation("relu")) |
|
| 44 | nn = para["conv_layer.0"](nn) |
|
| 45 | nn.add(Dropout(0.25)) |
|
| 46 | ||
| 47 | nn.add(Flatten()) |
|
| 48 | nn.add(Dense(para["neurons.0"])) |
|
| 49 | nn.add(Activation("relu")) |
|
| 50 | nn.add(Dropout(0.5)) |
|
| 51 | nn.add(Dense(10)) |
|
| 52 | nn.add(Activation("softmax")) |
|
| 53 | ||
| 54 | nn.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"]) |
|
| 55 | nn.fit(X_train, y_train, epochs=25, batch_size=128) |
|
| 56 | ||
| 57 | _, score = nn.evaluate(x=X_test, y=y_test) |
|
| 58 | ||
| 59 | return score |
|
| 60 | ||
| 61 | ||
| 62 | search_config = { |
|