| Total Complexity | 5 |
| Total Lines | 36 |
| Duplicated Lines | 0 % |
| Changes | 0 | ||
| 1 | # Author: Simon Blanke |
||
| 2 | # Email: [email protected] |
||
| 3 | # License: MIT License |
||
| 4 | |||
| 5 | import numpy as np |
||
| 6 | |||
| 7 | from hyperactive import Hyperactive |
||
| 8 | |||
| 9 | X, y = np.array([0]), np.array([0]) |
||
| 10 | memory = False |
||
| 11 | n_iter = 25 |
||
| 12 | |||
| 13 | |||
| 14 | def sphere_function(para, X_train, y_train): |
||
| 15 | loss = [] |
||
| 16 | for key in para.keys(): |
||
| 17 | if key == "iteration": |
||
| 18 | continue |
||
| 19 | loss.append(para[key] * para[key]) |
||
| 20 | |||
| 21 | return -np.array(loss).sum() |
||
| 22 | |||
| 23 | |||
| 24 | search_config = { |
||
| 25 | sphere_function: {"x1": np.arange(-3, 3, 0.1), "x2": np.arange(-3, 3, 0.1)} |
||
| 26 | } |
||
| 27 | |||
| 28 | |||
| 29 | def test_p_down(): |
||
| 30 | for p_down in [0.0001, 100]: |
||
| 31 | opt = Hyperactive(X, y, memory=memory) |
||
| 32 | opt.search( |
||
| 33 | search_config, |
||
| 34 | n_iter=n_iter, |
||
| 35 | optimizer={"StochasticHillClimbing": {"p_down": p_down}}, |
||
| 36 | ) |
||
| 37 |