for testing and deploying your application
for finding and fixing issues
for empowering human code reviews
# Author: Simon Blanke
# Email: [email protected]
# License: MIT License
import numpy as np
from hyperactive import Hyperactive
X, y = np.array([0]), np.array([0])
memory = False
n_iter = 25
def sphere_function(para, X_train, y_train):
loss = []
for key in para.keys():
if key == "iteration":
continue
loss.append(para[key] * para[key])
return -np.array(loss).sum()
search_config = {
sphere_function: {"x1": np.arange(-3, 3, 0.1), "x2": np.arange(-3, 3, 0.1)}
}
def test_p_down():
for p_down in [0.0001, 100]:
opt = Hyperactive(X, y, memory=memory)
opt.search(
search_config,
n_iter=n_iter,
optimizer={"StochasticHillClimbing": {"p_down": p_down}},
)