1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
from sklearn.datasets import load_iris |
6
|
|
|
|
7
|
|
|
data = load_iris() |
8
|
|
|
X = data.data |
9
|
|
|
y = data.target |
10
|
|
|
|
11
|
|
|
n_iter_0 = 0 |
12
|
|
|
n_iter_1 = 33 |
13
|
|
|
random_state = 0 |
14
|
|
|
cv = 2 |
15
|
|
|
n_jobs = 2 |
16
|
|
|
|
17
|
|
|
search_config = { |
18
|
|
|
"sklearn.tree.DecisionTreeClassifier": { |
19
|
|
|
"criterion": ["gini", "entropy"], |
20
|
|
|
"max_depth": range(1, 21), |
21
|
|
|
"min_samples_split": range(2, 21), |
22
|
|
|
"min_samples_leaf": range(1, 21), |
23
|
|
|
} |
24
|
|
|
} |
25
|
|
|
|
26
|
|
|
warm_start = {"sklearn.tree.DecisionTreeClassifier": {"max_depth": [1]}} |
27
|
|
|
|
28
|
|
|
|
29
|
|
|
def test_HillClimbingOptimizer(): |
30
|
|
|
from hyperactive import HillClimbingOptimizer |
31
|
|
|
|
32
|
|
|
opt0 = HillClimbingOptimizer( |
33
|
|
|
search_config, |
34
|
|
|
n_iter_0, |
35
|
|
|
random_state=random_state, |
36
|
|
|
verbosity=1, |
37
|
|
|
cv=cv, |
38
|
|
|
n_jobs=1, |
39
|
|
|
warm_start=warm_start, |
40
|
|
|
) |
41
|
|
|
opt0.fit(X, y) |
42
|
|
|
|
43
|
|
|
opt1 = HillClimbingOptimizer( |
44
|
|
|
search_config, |
45
|
|
|
n_iter_1, |
46
|
|
|
random_state=random_state, |
47
|
|
|
verbosity=1, |
48
|
|
|
cv=cv, |
49
|
|
|
n_jobs=n_jobs, |
50
|
|
|
warm_start=warm_start, |
51
|
|
|
) |
52
|
|
|
opt1.fit(X, y) |
53
|
|
|
|
54
|
|
|
assert opt0.score_best < opt1.score_best |
55
|
|
|
|
56
|
|
|
|
57
|
|
|
def test_StochasticHillClimbingOptimizer(): |
58
|
|
|
from hyperactive import StochasticHillClimbingOptimizer |
59
|
|
|
|
60
|
|
|
opt0 = StochasticHillClimbingOptimizer( |
61
|
|
|
search_config, |
62
|
|
|
n_iter_0, |
63
|
|
|
random_state=random_state, |
64
|
|
|
verbosity=0, |
65
|
|
|
cv=cv, |
66
|
|
|
n_jobs=1, |
67
|
|
|
warm_start=warm_start, |
68
|
|
|
) |
69
|
|
|
opt0.fit(X, y) |
70
|
|
|
|
71
|
|
|
opt1 = StochasticHillClimbingOptimizer( |
72
|
|
|
search_config, |
73
|
|
|
n_iter_1, |
74
|
|
|
random_state=random_state, |
75
|
|
|
verbosity=0, |
76
|
|
|
cv=cv, |
77
|
|
|
n_jobs=n_jobs, |
78
|
|
|
warm_start=warm_start, |
79
|
|
|
) |
80
|
|
|
opt1.fit(X, y) |
81
|
|
|
|
82
|
|
|
assert opt0.score_best < opt1.score_best |
83
|
|
|
|
84
|
|
|
|
85
|
|
|
def test_TabuOptimizer(): |
86
|
|
|
from hyperactive import TabuOptimizer |
87
|
|
|
|
88
|
|
|
opt0 = TabuOptimizer( |
89
|
|
|
search_config, |
90
|
|
|
n_iter_0, |
91
|
|
|
random_state=random_state, |
92
|
|
|
verbosity=0, |
93
|
|
|
cv=cv, |
94
|
|
|
n_jobs=1, |
95
|
|
|
warm_start=warm_start, |
96
|
|
|
) |
97
|
|
|
opt0.fit(X, y) |
98
|
|
|
|
99
|
|
|
opt1 = TabuOptimizer( |
100
|
|
|
search_config, |
101
|
|
|
n_iter_1, |
102
|
|
|
random_state=random_state, |
103
|
|
|
verbosity=0, |
104
|
|
|
cv=cv, |
105
|
|
|
n_jobs=n_jobs, |
106
|
|
|
warm_start=warm_start, |
107
|
|
|
) |
108
|
|
|
opt1.fit(X, y) |
109
|
|
|
|
110
|
|
|
assert opt0.score_best < opt1.score_best |
111
|
|
|
|
112
|
|
|
|
113
|
|
|
def test_RandomSearchOptimizer(): |
114
|
|
|
from hyperactive import RandomSearchOptimizer |
115
|
|
|
|
116
|
|
|
opt0 = RandomSearchOptimizer( |
117
|
|
|
search_config, |
118
|
|
|
n_iter_0, |
119
|
|
|
random_state=random_state, |
120
|
|
|
verbosity=0, |
121
|
|
|
cv=cv, |
122
|
|
|
n_jobs=1, |
123
|
|
|
warm_start=warm_start, |
124
|
|
|
) |
125
|
|
|
opt0.fit(X, y) |
126
|
|
|
|
127
|
|
|
opt1 = RandomSearchOptimizer( |
128
|
|
|
search_config, |
129
|
|
|
n_iter_1, |
130
|
|
|
random_state=random_state, |
131
|
|
|
verbosity=0, |
132
|
|
|
cv=cv, |
133
|
|
|
n_jobs=n_jobs, |
134
|
|
|
warm_start=warm_start, |
135
|
|
|
) |
136
|
|
|
opt1.fit(X, y) |
137
|
|
|
|
138
|
|
|
assert opt0.score_best < opt1.score_best |
139
|
|
|
|
140
|
|
|
|
141
|
|
|
def test_RandomRestartHillClimbingOptimizer(): |
142
|
|
|
from hyperactive import RandomRestartHillClimbingOptimizer |
143
|
|
|
|
144
|
|
|
opt0 = RandomRestartHillClimbingOptimizer( |
145
|
|
|
search_config, |
146
|
|
|
n_iter_0, |
147
|
|
|
random_state=random_state, |
148
|
|
|
verbosity=0, |
149
|
|
|
cv=cv, |
150
|
|
|
n_jobs=1, |
151
|
|
|
warm_start=warm_start, |
152
|
|
|
) |
153
|
|
|
opt0.fit(X, y) |
154
|
|
|
|
155
|
|
|
opt1 = RandomRestartHillClimbingOptimizer( |
156
|
|
|
search_config, |
157
|
|
|
n_iter_1, |
158
|
|
|
random_state=random_state, |
159
|
|
|
verbosity=0, |
160
|
|
|
cv=cv, |
161
|
|
|
n_jobs=n_jobs, |
162
|
|
|
warm_start=warm_start, |
163
|
|
|
) |
164
|
|
|
opt1.fit(X, y) |
165
|
|
|
|
166
|
|
|
assert opt0.score_best < opt1.score_best |
167
|
|
|
|
168
|
|
|
|
169
|
|
|
def test_RandomAnnealingOptimizer(): |
170
|
|
|
from hyperactive import RandomAnnealingOptimizer |
171
|
|
|
|
172
|
|
|
opt0 = RandomAnnealingOptimizer( |
173
|
|
|
search_config, |
174
|
|
|
n_iter_0, |
175
|
|
|
random_state=random_state, |
176
|
|
|
verbosity=0, |
177
|
|
|
cv=cv, |
178
|
|
|
n_jobs=1, |
179
|
|
|
warm_start=warm_start, |
180
|
|
|
) |
181
|
|
|
opt0.fit(X, y) |
182
|
|
|
|
183
|
|
|
opt1 = RandomAnnealingOptimizer( |
184
|
|
|
search_config, |
185
|
|
|
n_iter_1, |
186
|
|
|
random_state=random_state, |
187
|
|
|
verbosity=0, |
188
|
|
|
cv=cv, |
189
|
|
|
n_jobs=n_jobs, |
190
|
|
|
warm_start=warm_start, |
191
|
|
|
) |
192
|
|
|
opt1.fit(X, y) |
193
|
|
|
|
194
|
|
|
assert opt0.score_best < opt1.score_best |
195
|
|
|
|
196
|
|
|
|
197
|
|
|
def test_SimulatedAnnealingOptimizer(): |
198
|
|
|
from hyperactive import SimulatedAnnealingOptimizer |
199
|
|
|
|
200
|
|
|
opt0 = SimulatedAnnealingOptimizer( |
201
|
|
|
search_config, |
202
|
|
|
n_iter_0, |
203
|
|
|
random_state=random_state, |
204
|
|
|
verbosity=0, |
205
|
|
|
cv=cv, |
206
|
|
|
n_jobs=1, |
207
|
|
|
warm_start=warm_start, |
208
|
|
|
) |
209
|
|
|
opt0.fit(X, y) |
210
|
|
|
|
211
|
|
|
opt1 = SimulatedAnnealingOptimizer( |
212
|
|
|
search_config, |
213
|
|
|
n_iter_1, |
214
|
|
|
random_state=random_state, |
215
|
|
|
verbosity=0, |
216
|
|
|
cv=cv, |
217
|
|
|
n_jobs=n_jobs, |
218
|
|
|
warm_start=warm_start, |
219
|
|
|
) |
220
|
|
|
opt1.fit(X, y) |
221
|
|
|
|
222
|
|
|
assert opt0.score_best < opt1.score_best |
223
|
|
|
|
224
|
|
|
|
225
|
|
|
def test_StochasticTunnelingOptimizer(): |
226
|
|
|
from hyperactive import StochasticTunnelingOptimizer |
227
|
|
|
|
228
|
|
|
opt0 = StochasticTunnelingOptimizer( |
229
|
|
|
search_config, |
230
|
|
|
n_iter_0, |
231
|
|
|
random_state=random_state, |
232
|
|
|
verbosity=0, |
233
|
|
|
cv=cv, |
234
|
|
|
n_jobs=1, |
235
|
|
|
warm_start=warm_start, |
236
|
|
|
) |
237
|
|
|
opt0.fit(X, y) |
238
|
|
|
|
239
|
|
|
opt1 = StochasticTunnelingOptimizer( |
240
|
|
|
search_config, |
241
|
|
|
n_iter_1, |
242
|
|
|
random_state=random_state, |
243
|
|
|
verbosity=0, |
244
|
|
|
cv=cv, |
245
|
|
|
n_jobs=n_jobs, |
246
|
|
|
warm_start=warm_start, |
247
|
|
|
) |
248
|
|
|
opt1.fit(X, y) |
249
|
|
|
|
250
|
|
|
assert opt0.score_best < opt1.score_best |
251
|
|
|
|
252
|
|
|
|
253
|
|
|
def test_ParallelTemperingOptimizer(): |
254
|
|
|
from hyperactive import ParallelTemperingOptimizer |
255
|
|
|
|
256
|
|
|
opt0 = ParallelTemperingOptimizer( |
257
|
|
|
search_config, |
258
|
|
|
n_iter_0, |
259
|
|
|
random_state=random_state, |
260
|
|
|
verbosity=0, |
261
|
|
|
cv=cv, |
262
|
|
|
n_jobs=1, |
263
|
|
|
warm_start=warm_start, |
264
|
|
|
) |
265
|
|
|
opt0.fit(X, y) |
266
|
|
|
|
267
|
|
|
opt1 = ParallelTemperingOptimizer( |
268
|
|
|
search_config, |
269
|
|
|
n_iter_1, |
270
|
|
|
random_state=random_state, |
271
|
|
|
verbosity=0, |
272
|
|
|
cv=cv, |
273
|
|
|
n_jobs=n_jobs, |
274
|
|
|
warm_start=warm_start, |
275
|
|
|
) |
276
|
|
|
opt1.fit(X, y) |
277
|
|
|
|
278
|
|
|
assert opt0.score_best < opt1.score_best |
279
|
|
|
|
280
|
|
|
|
281
|
|
|
def test_ParticleSwarmOptimizer(): |
282
|
|
|
from hyperactive import ParticleSwarmOptimizer |
283
|
|
|
|
284
|
|
|
opt0 = ParticleSwarmOptimizer( |
285
|
|
|
search_config, |
286
|
|
|
n_iter_0, |
287
|
|
|
random_state=random_state, |
288
|
|
|
verbosity=0, |
289
|
|
|
cv=cv, |
290
|
|
|
n_jobs=1, |
291
|
|
|
warm_start=warm_start, |
292
|
|
|
) |
293
|
|
|
opt0.fit(X, y) |
294
|
|
|
|
295
|
|
|
opt1 = ParticleSwarmOptimizer( |
296
|
|
|
search_config, |
297
|
|
|
n_iter_1, |
298
|
|
|
random_state=random_state, |
299
|
|
|
verbosity=0, |
300
|
|
|
cv=cv, |
301
|
|
|
n_jobs=n_jobs, |
302
|
|
|
warm_start=warm_start, |
303
|
|
|
) |
304
|
|
|
opt1.fit(X, y) |
305
|
|
|
|
306
|
|
|
assert opt0.score_best < opt1.score_best |
307
|
|
|
|
308
|
|
|
|
309
|
|
|
def test_EvolutionStrategyOptimizer(): |
310
|
|
|
from hyperactive import EvolutionStrategyOptimizer |
311
|
|
|
|
312
|
|
|
opt0 = EvolutionStrategyOptimizer( |
313
|
|
|
search_config, |
314
|
|
|
n_iter_0, |
315
|
|
|
random_state=random_state, |
316
|
|
|
verbosity=0, |
317
|
|
|
cv=cv, |
318
|
|
|
n_jobs=1, |
319
|
|
|
warm_start=warm_start, |
320
|
|
|
) |
321
|
|
|
opt0.fit(X, y) |
322
|
|
|
|
323
|
|
|
opt1 = EvolutionStrategyOptimizer( |
324
|
|
|
search_config, |
325
|
|
|
n_iter_1, |
326
|
|
|
random_state=random_state, |
327
|
|
|
verbosity=0, |
328
|
|
|
cv=cv, |
329
|
|
|
n_jobs=n_jobs, |
330
|
|
|
warm_start=warm_start, |
331
|
|
|
) |
332
|
|
|
opt1.fit(X, y) |
333
|
|
|
|
334
|
|
|
assert opt0.score_best < opt1.score_best |
335
|
|
|
|
336
|
|
|
|
337
|
|
|
def test_BayesianOptimizer(): |
338
|
|
|
from hyperactive import BayesianOptimizer |
339
|
|
|
|
340
|
|
|
opt0 = BayesianOptimizer( |
341
|
|
|
search_config, |
342
|
|
|
n_iter_0, |
343
|
|
|
random_state=random_state, |
344
|
|
|
verbosity=0, |
345
|
|
|
cv=cv, |
346
|
|
|
n_jobs=1, |
347
|
|
|
warm_start=warm_start, |
348
|
|
|
) |
349
|
|
|
opt0.fit(X, y) |
350
|
|
|
|
351
|
|
|
opt1 = BayesianOptimizer( |
352
|
|
|
search_config, |
353
|
|
|
n_iter_1, |
354
|
|
|
random_state=random_state, |
355
|
|
|
verbosity=0, |
356
|
|
|
cv=cv, |
357
|
|
|
n_jobs=n_jobs, |
358
|
|
|
warm_start=warm_start, |
359
|
|
|
) |
360
|
|
|
opt1.fit(X, y) |
361
|
|
|
|
362
|
|
|
assert opt0.score_best < opt1.score_best |
363
|
|
|
|