|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
from sklearn.datasets import load_iris |
|
6
|
|
|
|
|
7
|
|
|
data = load_iris() |
|
8
|
|
|
X = data.data |
|
9
|
|
|
y = data.target |
|
10
|
|
|
|
|
11
|
|
|
n_iter_0 = 0 |
|
12
|
|
|
n_iter_1 = 33 |
|
13
|
|
|
random_state = 0 |
|
14
|
|
|
cv = 2 |
|
15
|
|
|
n_jobs = 2 |
|
16
|
|
|
|
|
17
|
|
|
search_config = { |
|
18
|
|
|
"sklearn.tree.DecisionTreeClassifier": { |
|
19
|
|
|
"criterion": ["gini", "entropy"], |
|
20
|
|
|
"max_depth": range(1, 21), |
|
21
|
|
|
"min_samples_split": range(2, 21), |
|
22
|
|
|
"min_samples_leaf": range(1, 21), |
|
23
|
|
|
} |
|
24
|
|
|
} |
|
25
|
|
|
|
|
26
|
|
|
warm_start = {"sklearn.tree.DecisionTreeClassifier": {"max_depth": [1]}} |
|
27
|
|
|
|
|
28
|
|
|
|
|
29
|
|
|
def test_HillClimbingOptimizer(): |
|
30
|
|
|
from hyperactive import HillClimbingOptimizer |
|
31
|
|
|
|
|
32
|
|
|
opt0 = HillClimbingOptimizer( |
|
33
|
|
|
search_config, |
|
34
|
|
|
n_iter_0, |
|
35
|
|
|
random_state=random_state, |
|
36
|
|
|
verbosity=1, |
|
37
|
|
|
cv=cv, |
|
38
|
|
|
n_jobs=1, |
|
39
|
|
|
warm_start=warm_start, |
|
40
|
|
|
) |
|
41
|
|
|
opt0.fit(X, y) |
|
42
|
|
|
|
|
43
|
|
|
opt1 = HillClimbingOptimizer( |
|
44
|
|
|
search_config, |
|
45
|
|
|
n_iter_1, |
|
46
|
|
|
random_state=random_state, |
|
47
|
|
|
verbosity=1, |
|
48
|
|
|
cv=cv, |
|
49
|
|
|
n_jobs=n_jobs, |
|
50
|
|
|
warm_start=warm_start, |
|
51
|
|
|
) |
|
52
|
|
|
opt1.fit(X, y) |
|
53
|
|
|
|
|
54
|
|
|
assert opt0.score_best < opt1.score_best |
|
55
|
|
|
|
|
56
|
|
|
|
|
57
|
|
|
def test_StochasticHillClimbingOptimizer(): |
|
58
|
|
|
from hyperactive import StochasticHillClimbingOptimizer |
|
59
|
|
|
|
|
60
|
|
|
opt0 = StochasticHillClimbingOptimizer( |
|
61
|
|
|
search_config, |
|
62
|
|
|
n_iter_0, |
|
63
|
|
|
random_state=random_state, |
|
64
|
|
|
verbosity=0, |
|
65
|
|
|
cv=cv, |
|
66
|
|
|
n_jobs=1, |
|
67
|
|
|
warm_start=warm_start, |
|
68
|
|
|
) |
|
69
|
|
|
opt0.fit(X, y) |
|
70
|
|
|
|
|
71
|
|
|
opt1 = StochasticHillClimbingOptimizer( |
|
72
|
|
|
search_config, |
|
73
|
|
|
n_iter_1, |
|
74
|
|
|
random_state=random_state, |
|
75
|
|
|
verbosity=0, |
|
76
|
|
|
cv=cv, |
|
77
|
|
|
n_jobs=n_jobs, |
|
78
|
|
|
warm_start=warm_start, |
|
79
|
|
|
) |
|
80
|
|
|
opt1.fit(X, y) |
|
81
|
|
|
|
|
82
|
|
|
assert opt0.score_best < opt1.score_best |
|
83
|
|
|
|
|
84
|
|
|
|
|
85
|
|
|
def test_TabuOptimizer(): |
|
86
|
|
|
from hyperactive import TabuOptimizer |
|
87
|
|
|
|
|
88
|
|
|
opt0 = TabuOptimizer( |
|
89
|
|
|
search_config, |
|
90
|
|
|
n_iter_0, |
|
91
|
|
|
random_state=random_state, |
|
92
|
|
|
verbosity=0, |
|
93
|
|
|
cv=cv, |
|
94
|
|
|
n_jobs=1, |
|
95
|
|
|
warm_start=warm_start, |
|
96
|
|
|
) |
|
97
|
|
|
opt0.fit(X, y) |
|
98
|
|
|
|
|
99
|
|
|
opt1 = TabuOptimizer( |
|
100
|
|
|
search_config, |
|
101
|
|
|
n_iter_1, |
|
102
|
|
|
random_state=random_state, |
|
103
|
|
|
verbosity=0, |
|
104
|
|
|
cv=cv, |
|
105
|
|
|
n_jobs=n_jobs, |
|
106
|
|
|
warm_start=warm_start, |
|
107
|
|
|
) |
|
108
|
|
|
opt1.fit(X, y) |
|
109
|
|
|
|
|
110
|
|
|
assert opt0.score_best < opt1.score_best |
|
111
|
|
|
|
|
112
|
|
|
|
|
113
|
|
|
def test_RandomSearchOptimizer(): |
|
114
|
|
|
from hyperactive import RandomSearchOptimizer |
|
115
|
|
|
|
|
116
|
|
|
opt0 = RandomSearchOptimizer( |
|
117
|
|
|
search_config, |
|
118
|
|
|
n_iter_0, |
|
119
|
|
|
random_state=random_state, |
|
120
|
|
|
verbosity=0, |
|
121
|
|
|
cv=cv, |
|
122
|
|
|
n_jobs=1, |
|
123
|
|
|
warm_start=warm_start, |
|
124
|
|
|
) |
|
125
|
|
|
opt0.fit(X, y) |
|
126
|
|
|
|
|
127
|
|
|
opt1 = RandomSearchOptimizer( |
|
128
|
|
|
search_config, |
|
129
|
|
|
n_iter_1, |
|
130
|
|
|
random_state=random_state, |
|
131
|
|
|
verbosity=0, |
|
132
|
|
|
cv=cv, |
|
133
|
|
|
n_jobs=n_jobs, |
|
134
|
|
|
warm_start=warm_start, |
|
135
|
|
|
) |
|
136
|
|
|
opt1.fit(X, y) |
|
137
|
|
|
|
|
138
|
|
|
assert opt0.score_best < opt1.score_best |
|
139
|
|
|
|
|
140
|
|
|
|
|
141
|
|
|
def test_RandomRestartHillClimbingOptimizer(): |
|
142
|
|
|
from hyperactive import RandomRestartHillClimbingOptimizer |
|
143
|
|
|
|
|
144
|
|
|
opt0 = RandomRestartHillClimbingOptimizer( |
|
145
|
|
|
search_config, |
|
146
|
|
|
n_iter_0, |
|
147
|
|
|
random_state=random_state, |
|
148
|
|
|
verbosity=0, |
|
149
|
|
|
cv=cv, |
|
150
|
|
|
n_jobs=1, |
|
151
|
|
|
warm_start=warm_start, |
|
152
|
|
|
) |
|
153
|
|
|
opt0.fit(X, y) |
|
154
|
|
|
|
|
155
|
|
|
opt1 = RandomRestartHillClimbingOptimizer( |
|
156
|
|
|
search_config, |
|
157
|
|
|
n_iter_1, |
|
158
|
|
|
random_state=random_state, |
|
159
|
|
|
verbosity=0, |
|
160
|
|
|
cv=cv, |
|
161
|
|
|
n_jobs=n_jobs, |
|
162
|
|
|
warm_start=warm_start, |
|
163
|
|
|
) |
|
164
|
|
|
opt1.fit(X, y) |
|
165
|
|
|
|
|
166
|
|
|
assert opt0.score_best < opt1.score_best |
|
167
|
|
|
|
|
168
|
|
|
|
|
169
|
|
|
def test_RandomAnnealingOptimizer(): |
|
170
|
|
|
from hyperactive import RandomAnnealingOptimizer |
|
171
|
|
|
|
|
172
|
|
|
opt0 = RandomAnnealingOptimizer( |
|
173
|
|
|
search_config, |
|
174
|
|
|
n_iter_0, |
|
175
|
|
|
random_state=random_state, |
|
176
|
|
|
verbosity=0, |
|
177
|
|
|
cv=cv, |
|
178
|
|
|
n_jobs=1, |
|
179
|
|
|
warm_start=warm_start, |
|
180
|
|
|
) |
|
181
|
|
|
opt0.fit(X, y) |
|
182
|
|
|
|
|
183
|
|
|
opt1 = RandomAnnealingOptimizer( |
|
184
|
|
|
search_config, |
|
185
|
|
|
n_iter_1, |
|
186
|
|
|
random_state=random_state, |
|
187
|
|
|
verbosity=0, |
|
188
|
|
|
cv=cv, |
|
189
|
|
|
n_jobs=n_jobs, |
|
190
|
|
|
warm_start=warm_start, |
|
191
|
|
|
) |
|
192
|
|
|
opt1.fit(X, y) |
|
193
|
|
|
|
|
194
|
|
|
assert opt0.score_best < opt1.score_best |
|
195
|
|
|
|
|
196
|
|
|
|
|
197
|
|
|
def test_SimulatedAnnealingOptimizer(): |
|
198
|
|
|
from hyperactive import SimulatedAnnealingOptimizer |
|
199
|
|
|
|
|
200
|
|
|
opt0 = SimulatedAnnealingOptimizer( |
|
201
|
|
|
search_config, |
|
202
|
|
|
n_iter_0, |
|
203
|
|
|
random_state=random_state, |
|
204
|
|
|
verbosity=0, |
|
205
|
|
|
cv=cv, |
|
206
|
|
|
n_jobs=1, |
|
207
|
|
|
warm_start=warm_start, |
|
208
|
|
|
) |
|
209
|
|
|
opt0.fit(X, y) |
|
210
|
|
|
|
|
211
|
|
|
opt1 = SimulatedAnnealingOptimizer( |
|
212
|
|
|
search_config, |
|
213
|
|
|
n_iter_1, |
|
214
|
|
|
random_state=random_state, |
|
215
|
|
|
verbosity=0, |
|
216
|
|
|
cv=cv, |
|
217
|
|
|
n_jobs=n_jobs, |
|
218
|
|
|
warm_start=warm_start, |
|
219
|
|
|
) |
|
220
|
|
|
opt1.fit(X, y) |
|
221
|
|
|
|
|
222
|
|
|
assert opt0.score_best < opt1.score_best |
|
223
|
|
|
|
|
224
|
|
|
|
|
225
|
|
|
def test_StochasticTunnelingOptimizer(): |
|
226
|
|
|
from hyperactive import StochasticTunnelingOptimizer |
|
227
|
|
|
|
|
228
|
|
|
opt0 = StochasticTunnelingOptimizer( |
|
229
|
|
|
search_config, |
|
230
|
|
|
n_iter_0, |
|
231
|
|
|
random_state=random_state, |
|
232
|
|
|
verbosity=0, |
|
233
|
|
|
cv=cv, |
|
234
|
|
|
n_jobs=1, |
|
235
|
|
|
warm_start=warm_start, |
|
236
|
|
|
) |
|
237
|
|
|
opt0.fit(X, y) |
|
238
|
|
|
|
|
239
|
|
|
opt1 = StochasticTunnelingOptimizer( |
|
240
|
|
|
search_config, |
|
241
|
|
|
n_iter_1, |
|
242
|
|
|
random_state=random_state, |
|
243
|
|
|
verbosity=0, |
|
244
|
|
|
cv=cv, |
|
245
|
|
|
n_jobs=n_jobs, |
|
246
|
|
|
warm_start=warm_start, |
|
247
|
|
|
) |
|
248
|
|
|
opt1.fit(X, y) |
|
249
|
|
|
|
|
250
|
|
|
assert opt0.score_best < opt1.score_best |
|
251
|
|
|
|
|
252
|
|
|
|
|
253
|
|
|
def test_ParallelTemperingOptimizer(): |
|
254
|
|
|
from hyperactive import ParallelTemperingOptimizer |
|
255
|
|
|
|
|
256
|
|
|
opt0 = ParallelTemperingOptimizer( |
|
257
|
|
|
search_config, |
|
258
|
|
|
n_iter_0, |
|
259
|
|
|
random_state=random_state, |
|
260
|
|
|
verbosity=0, |
|
261
|
|
|
cv=cv, |
|
262
|
|
|
n_jobs=1, |
|
263
|
|
|
warm_start=warm_start, |
|
264
|
|
|
) |
|
265
|
|
|
opt0.fit(X, y) |
|
266
|
|
|
|
|
267
|
|
|
opt1 = ParallelTemperingOptimizer( |
|
268
|
|
|
search_config, |
|
269
|
|
|
n_iter_1, |
|
270
|
|
|
random_state=random_state, |
|
271
|
|
|
verbosity=0, |
|
272
|
|
|
cv=cv, |
|
273
|
|
|
n_jobs=n_jobs, |
|
274
|
|
|
warm_start=warm_start, |
|
275
|
|
|
) |
|
276
|
|
|
opt1.fit(X, y) |
|
277
|
|
|
|
|
278
|
|
|
assert opt0.score_best < opt1.score_best |
|
279
|
|
|
|
|
280
|
|
|
|
|
281
|
|
|
def test_ParticleSwarmOptimizer(): |
|
282
|
|
|
from hyperactive import ParticleSwarmOptimizer |
|
283
|
|
|
|
|
284
|
|
|
opt0 = ParticleSwarmOptimizer( |
|
285
|
|
|
search_config, |
|
286
|
|
|
n_iter_0, |
|
287
|
|
|
random_state=random_state, |
|
288
|
|
|
verbosity=0, |
|
289
|
|
|
cv=cv, |
|
290
|
|
|
n_jobs=1, |
|
291
|
|
|
warm_start=warm_start, |
|
292
|
|
|
) |
|
293
|
|
|
opt0.fit(X, y) |
|
294
|
|
|
|
|
295
|
|
|
opt1 = ParticleSwarmOptimizer( |
|
296
|
|
|
search_config, |
|
297
|
|
|
n_iter_1, |
|
298
|
|
|
random_state=random_state, |
|
299
|
|
|
verbosity=0, |
|
300
|
|
|
cv=cv, |
|
301
|
|
|
n_jobs=n_jobs, |
|
302
|
|
|
warm_start=warm_start, |
|
303
|
|
|
) |
|
304
|
|
|
opt1.fit(X, y) |
|
305
|
|
|
|
|
306
|
|
|
assert opt0.score_best < opt1.score_best |
|
307
|
|
|
|
|
308
|
|
|
|
|
309
|
|
|
def test_EvolutionStrategyOptimizer(): |
|
310
|
|
|
from hyperactive import EvolutionStrategyOptimizer |
|
311
|
|
|
|
|
312
|
|
|
opt0 = EvolutionStrategyOptimizer( |
|
313
|
|
|
search_config, |
|
314
|
|
|
n_iter_0, |
|
315
|
|
|
random_state=random_state, |
|
316
|
|
|
verbosity=0, |
|
317
|
|
|
cv=cv, |
|
318
|
|
|
n_jobs=1, |
|
319
|
|
|
warm_start=warm_start, |
|
320
|
|
|
) |
|
321
|
|
|
opt0.fit(X, y) |
|
322
|
|
|
|
|
323
|
|
|
opt1 = EvolutionStrategyOptimizer( |
|
324
|
|
|
search_config, |
|
325
|
|
|
n_iter_1, |
|
326
|
|
|
random_state=random_state, |
|
327
|
|
|
verbosity=0, |
|
328
|
|
|
cv=cv, |
|
329
|
|
|
n_jobs=n_jobs, |
|
330
|
|
|
warm_start=warm_start, |
|
331
|
|
|
) |
|
332
|
|
|
opt1.fit(X, y) |
|
333
|
|
|
|
|
334
|
|
|
assert opt0.score_best < opt1.score_best |
|
335
|
|
|
|
|
336
|
|
|
|
|
337
|
|
|
def test_BayesianOptimizer(): |
|
338
|
|
|
from hyperactive import BayesianOptimizer |
|
339
|
|
|
|
|
340
|
|
|
opt0 = BayesianOptimizer( |
|
341
|
|
|
search_config, |
|
342
|
|
|
n_iter_0, |
|
343
|
|
|
random_state=random_state, |
|
344
|
|
|
verbosity=0, |
|
345
|
|
|
cv=cv, |
|
346
|
|
|
n_jobs=1, |
|
347
|
|
|
warm_start=warm_start, |
|
348
|
|
|
) |
|
349
|
|
|
opt0.fit(X, y) |
|
350
|
|
|
|
|
351
|
|
|
opt1 = BayesianOptimizer( |
|
352
|
|
|
search_config, |
|
353
|
|
|
n_iter_1, |
|
354
|
|
|
random_state=random_state, |
|
355
|
|
|
verbosity=0, |
|
356
|
|
|
cv=cv, |
|
357
|
|
|
n_jobs=n_jobs, |
|
358
|
|
|
warm_start=warm_start, |
|
359
|
|
|
) |
|
360
|
|
|
opt1.fit(X, y) |
|
361
|
|
|
|
|
362
|
|
|
assert opt0.score_best < opt1.score_best |
|
363
|
|
|
|