Passed
Push — master ( 212f75...0ed08f )
by Simon
04:41
created

meta_data_collection.model()   A

Complexity

Conditions 1

Size

Total Lines 6
Code Lines 5

Duplication

Lines 0
Ratio 0 %

Importance

Changes 0
Metric Value
cc 1
eloc 5
nop 1
dl 0
loc 6
rs 10
c 0
b 0
f 0
1
import pandas as pd
2
from sklearn.datasets import load_iris
3
from sklearn.neighbors import KNeighborsClassifier
4
from sklearn.model_selection import cross_val_score
5
6
from hyperactive import Hyperactive
7
8
data = load_iris()
9
X, y = data.data, data.target
10
11
12
def model1(opt):
13
    knr = KNeighborsClassifier(n_neighbors=opt["n_neighbors"])
14
    scores = cross_val_score(knr, X, y, cv=10)
15
    score = scores.mean()
16
17
    return score
18
19
20
search_space = {"n_neighbors": list(range(1, 50)), "leaf_size": list(range(5, 60, 5))}
21
22
23
hyper = Hyperactive()
24
hyper.add_search(model1, search_space, n_iter=500, memory=True)
25
hyper.run()
26
27
search_data = hyper.results(model1)
28
# save the search data of a model for later use
29
search_data.to_csv("./model1.csv", index=False)
30
31
32
# load the search data and pass it to "memory_warm_start"
33
search_data_loaded = pd.read_csv("./model1.csv")
34
35
hyper = Hyperactive()
36
hyper.add_search(
37
    model1, search_space, n_iter=500, memory=True, memory_warm_start=search_data_loaded
38
)
39
hyper.run()
40