Total Complexity | 1 |
Total Lines | 40 |
Duplicated Lines | 0 % |
Changes | 0 |
1 | import pandas as pd |
||
2 | from sklearn.datasets import load_iris |
||
3 | from sklearn.neighbors import KNeighborsClassifier |
||
4 | from sklearn.model_selection import cross_val_score |
||
5 | |||
6 | from hyperactive import Hyperactive |
||
7 | |||
8 | data = load_iris() |
||
9 | X, y = data.data, data.target |
||
10 | |||
11 | |||
12 | def model1(opt): |
||
13 | knr = KNeighborsClassifier(n_neighbors=opt["n_neighbors"]) |
||
14 | scores = cross_val_score(knr, X, y, cv=10) |
||
15 | score = scores.mean() |
||
16 | |||
17 | return score |
||
18 | |||
19 | |||
20 | search_space = {"n_neighbors": list(range(1, 50)), "leaf_size": list(range(5, 60, 5))} |
||
21 | |||
22 | |||
23 | hyper = Hyperactive() |
||
24 | hyper.add_search(model1, search_space, n_iter=500, memory=True) |
||
25 | hyper.run() |
||
26 | |||
27 | search_data = hyper.results(model1) |
||
28 | # save the search data of a model for later use |
||
29 | search_data.to_csv("./model1.csv", index=False) |
||
30 | |||
31 | |||
32 | # load the search data and pass it to "memory_warm_start" |
||
33 | search_data_loaded = pd.read_csv("./model1.csv") |
||
34 | |||
35 | hyper = Hyperactive() |
||
36 | hyper.add_search( |
||
37 | model1, search_space, n_iter=500, memory=True, memory_warm_start=search_data_loaded |
||
38 | ) |
||
39 | hyper.run() |
||
40 |