1
|
|
|
"""Test module for constraint optimization functionality.""" |
2
|
|
|
|
3
|
|
|
import numpy as np |
4
|
|
|
|
5
|
|
|
from hyperactive import Hyperactive |
6
|
|
|
|
7
|
|
|
|
8
|
|
|
def test_constr_opt_0(): |
9
|
|
|
"""Test constraint optimization with single constraint.""" |
10
|
|
|
|
11
|
|
|
def objective_function(para): |
12
|
|
|
score = -para["x1"] * para["x1"] |
13
|
|
|
return score |
14
|
|
|
|
15
|
|
|
search_space = { |
16
|
|
|
"x1": list(np.arange(-15, 15, 1)), |
17
|
|
|
} |
18
|
|
|
|
19
|
|
|
def constraint_1(para): |
20
|
|
|
print(" para", para) |
21
|
|
|
|
22
|
|
|
return para["x1"] > -5 |
23
|
|
|
|
24
|
|
|
constraints_list = [constraint_1] |
25
|
|
|
|
26
|
|
|
hyper = Hyperactive() |
27
|
|
|
hyper.add_search( |
28
|
|
|
objective_function, |
29
|
|
|
search_space, |
30
|
|
|
n_iter=50, |
31
|
|
|
constraints=constraints_list, |
32
|
|
|
) |
33
|
|
|
hyper.run() |
34
|
|
|
|
35
|
|
|
search_data = hyper.search_data(objective_function) |
36
|
|
|
x0_values = search_data["x1"].values |
37
|
|
|
|
38
|
|
|
print("\n search_data \n", search_data, "\n") |
39
|
|
|
|
40
|
|
|
assert np.all(x0_values > -5) |
41
|
|
|
|
42
|
|
|
|
43
|
|
|
def test_constr_opt_1(): |
44
|
|
|
"""Test constraint optimization with single constraint on 2D space.""" |
45
|
|
|
|
46
|
|
|
def objective_function(para): |
47
|
|
|
score = -(para["x1"] * para["x1"] + para["x2"] * para["x2"]) |
48
|
|
|
return score |
49
|
|
|
|
50
|
|
|
search_space = { |
51
|
|
|
"x1": list(np.arange(-10, 10, 1)), |
52
|
|
|
"x2": list(np.arange(-10, 10, 1)), |
53
|
|
|
} |
54
|
|
|
|
55
|
|
|
def constraint_1(para): |
56
|
|
|
return para["x1"] > -5 |
57
|
|
|
|
58
|
|
|
constraints_list = [constraint_1] |
59
|
|
|
|
60
|
|
|
hyper = Hyperactive() |
61
|
|
|
hyper.add_search( |
62
|
|
|
objective_function, |
63
|
|
|
search_space, |
64
|
|
|
n_iter=50, |
65
|
|
|
constraints=constraints_list, |
66
|
|
|
) |
67
|
|
|
hyper.run() |
68
|
|
|
|
69
|
|
|
search_data = hyper.search_data(objective_function) |
70
|
|
|
x0_values = search_data["x1"].values |
71
|
|
|
|
72
|
|
|
print("\n search_data \n", search_data, "\n") |
73
|
|
|
|
74
|
|
|
assert np.all(x0_values > -5) |
75
|
|
|
|
76
|
|
|
|
77
|
|
|
def test_constr_opt_2(): |
78
|
|
|
"""Test constraint optimization with multiple constraints.""" |
79
|
|
|
n_iter = 50 |
80
|
|
|
|
81
|
|
|
def objective_function(para): |
82
|
|
|
score = -para["x1"] * para["x1"] |
83
|
|
|
return score |
84
|
|
|
|
85
|
|
|
search_space = { |
86
|
|
|
"x1": list(np.arange(-10, 10, 0.1)), |
87
|
|
|
} |
88
|
|
|
|
89
|
|
|
def constraint_1(para): |
90
|
|
|
return para["x1"] > -5 |
91
|
|
|
|
92
|
|
|
def constraint_2(para): |
93
|
|
|
return para["x1"] < 5 |
94
|
|
|
|
95
|
|
|
constraints_list = [constraint_1, constraint_2] |
96
|
|
|
|
97
|
|
|
hyper = Hyperactive() |
98
|
|
|
hyper.add_search( |
99
|
|
|
objective_function, |
100
|
|
|
search_space, |
101
|
|
|
n_iter=50, |
102
|
|
|
constraints=constraints_list, |
103
|
|
|
) |
104
|
|
|
hyper.run() |
105
|
|
|
|
106
|
|
|
search_data = hyper.search_data(objective_function) |
107
|
|
|
x0_values = search_data["x1"].values |
108
|
|
|
|
109
|
|
|
print("\n search_data \n", search_data, "\n") |
110
|
|
|
|
111
|
|
|
assert np.all(x0_values > -5) |
112
|
|
|
assert np.all(x0_values < 5) |
113
|
|
|
|
114
|
|
|
n_new_positions = 0 |
115
|
|
|
n_new_scores = 0 |
116
|
|
|
|
117
|
|
|
n_current_positions = 0 |
118
|
|
|
n_current_scores = 0 |
119
|
|
|
|
120
|
|
|
n_best_positions = 0 |
121
|
|
|
n_best_scores = 0 |
122
|
|
|
|
123
|
|
|
for hyper_optimizer in hyper.opt_pros.values(): |
124
|
|
|
optimizer = hyper_optimizer.gfo_optimizer |
125
|
|
|
|
126
|
|
|
n_new_positions = n_new_positions + len(optimizer.pos_new_list) |
127
|
|
|
n_new_scores = n_new_scores + len(optimizer.score_new_list) |
128
|
|
|
|
129
|
|
|
n_current_positions = n_current_positions + len(optimizer.pos_current_list) |
130
|
|
|
n_current_scores = n_current_scores + len(optimizer.score_current_list) |
131
|
|
|
|
132
|
|
|
n_best_positions = n_best_positions + len(optimizer.pos_best_list) |
133
|
|
|
n_best_scores = n_best_scores + len(optimizer.score_best_list) |
134
|
|
|
|
135
|
|
|
print("\n optimizer", optimizer) |
136
|
|
|
print(" n_new_positions", optimizer.pos_new_list) |
137
|
|
|
print(" n_new_scores", optimizer.score_new_list) |
138
|
|
|
|
139
|
|
|
assert n_new_positions == n_iter |
140
|
|
|
assert n_new_scores == n_iter |
141
|
|
|
|
142
|
|
|
assert n_current_positions == n_current_scores |
143
|
|
|
assert n_current_positions <= n_new_positions |
144
|
|
|
|
145
|
|
|
assert n_best_positions == n_best_scores |
146
|
|
|
assert n_best_positions <= n_new_positions |
147
|
|
|
|
148
|
|
|
assert n_new_positions == n_new_scores |
149
|
|
|
|