1
|
|
|
import numpy as np |
2
|
|
|
|
3
|
|
|
from hyperactive import Hyperactive |
4
|
|
|
|
5
|
|
|
|
6
|
|
|
def test_constr_opt_0(): |
7
|
|
|
def objective_function(para): |
8
|
|
|
score = -para["x1"] * para["x1"] |
9
|
|
|
return score |
10
|
|
|
|
11
|
|
|
search_space = { |
12
|
|
|
"x1": list(np.arange(-15, 15, 1)), |
13
|
|
|
} |
14
|
|
|
|
15
|
|
|
def constraint_1(para): |
16
|
|
|
print(" para", para) |
17
|
|
|
|
18
|
|
|
return para["x1"] > -5 |
19
|
|
|
|
20
|
|
|
constraints_list = [constraint_1] |
21
|
|
|
|
22
|
|
|
hyper = Hyperactive() |
23
|
|
|
hyper.add_search( |
24
|
|
|
objective_function, |
25
|
|
|
search_space, |
26
|
|
|
n_iter=50, |
27
|
|
|
constraints=constraints_list, |
28
|
|
|
) |
29
|
|
|
hyper.run() |
30
|
|
|
|
31
|
|
|
search_data = hyper.search_data(objective_function) |
32
|
|
|
x0_values = search_data["x1"].values |
33
|
|
|
|
34
|
|
|
print("\n search_data \n", search_data, "\n") |
35
|
|
|
|
36
|
|
|
assert np.all(x0_values > -5) |
37
|
|
|
|
38
|
|
|
|
39
|
|
|
def test_constr_opt_1(): |
40
|
|
|
def objective_function(para): |
41
|
|
|
score = -(para["x1"] * para["x1"] + para["x2"] * para["x2"]) |
42
|
|
|
return score |
43
|
|
|
|
44
|
|
|
search_space = { |
45
|
|
|
"x1": list(np.arange(-10, 10, 1)), |
46
|
|
|
"x2": list(np.arange(-10, 10, 1)), |
47
|
|
|
} |
48
|
|
|
|
49
|
|
|
def constraint_1(para): |
50
|
|
|
return para["x1"] > -5 |
51
|
|
|
|
52
|
|
|
constraints_list = [constraint_1] |
53
|
|
|
|
54
|
|
|
hyper = Hyperactive() |
55
|
|
|
hyper.add_search( |
56
|
|
|
objective_function, |
57
|
|
|
search_space, |
58
|
|
|
n_iter=50, |
59
|
|
|
constraints=constraints_list, |
60
|
|
|
) |
61
|
|
|
hyper.run() |
62
|
|
|
|
63
|
|
|
search_data = hyper.search_data(objective_function) |
64
|
|
|
x0_values = search_data["x1"].values |
65
|
|
|
|
66
|
|
|
print("\n search_data \n", search_data, "\n") |
67
|
|
|
|
68
|
|
|
assert np.all(x0_values > -5) |
69
|
|
|
|
70
|
|
|
|
71
|
|
|
def test_constr_opt_2(): |
72
|
|
|
n_iter = 50 |
73
|
|
|
|
74
|
|
|
def objective_function(para): |
75
|
|
|
score = -para["x1"] * para["x1"] |
76
|
|
|
return score |
77
|
|
|
|
78
|
|
|
search_space = { |
79
|
|
|
"x1": list(np.arange(-10, 10, 0.1)), |
80
|
|
|
} |
81
|
|
|
|
82
|
|
|
def constraint_1(para): |
83
|
|
|
return para["x1"] > -5 |
84
|
|
|
|
85
|
|
|
def constraint_2(para): |
86
|
|
|
return para["x1"] < 5 |
87
|
|
|
|
88
|
|
|
constraints_list = [constraint_1, constraint_2] |
89
|
|
|
|
90
|
|
|
hyper = Hyperactive() |
91
|
|
|
hyper.add_search( |
92
|
|
|
objective_function, |
93
|
|
|
search_space, |
94
|
|
|
n_iter=50, |
95
|
|
|
constraints=constraints_list, |
96
|
|
|
) |
97
|
|
|
hyper.run() |
98
|
|
|
|
99
|
|
|
search_data = hyper.search_data(objective_function) |
100
|
|
|
x0_values = search_data["x1"].values |
101
|
|
|
|
102
|
|
|
print("\n search_data \n", search_data, "\n") |
103
|
|
|
|
104
|
|
|
assert np.all(x0_values > -5) |
105
|
|
|
assert np.all(x0_values < 5) |
106
|
|
|
|
107
|
|
|
n_new_positions = 0 |
108
|
|
|
n_new_scores = 0 |
109
|
|
|
|
110
|
|
|
n_current_positions = 0 |
111
|
|
|
n_current_scores = 0 |
112
|
|
|
|
113
|
|
|
n_best_positions = 0 |
114
|
|
|
n_best_scores = 0 |
115
|
|
|
|
116
|
|
|
for hyper_optimizer in hyper.opt_pros.values(): |
117
|
|
|
optimizer = hyper_optimizer.gfo_optimizer |
118
|
|
|
|
119
|
|
|
n_new_positions = n_new_positions + len(optimizer.pos_new_list) |
120
|
|
|
n_new_scores = n_new_scores + len(optimizer.score_new_list) |
121
|
|
|
|
122
|
|
|
n_current_positions = n_current_positions + len(optimizer.pos_current_list) |
123
|
|
|
n_current_scores = n_current_scores + len(optimizer.score_current_list) |
124
|
|
|
|
125
|
|
|
n_best_positions = n_best_positions + len(optimizer.pos_best_list) |
126
|
|
|
n_best_scores = n_best_scores + len(optimizer.score_best_list) |
127
|
|
|
|
128
|
|
|
print("\n optimizer", optimizer) |
129
|
|
|
print(" n_new_positions", optimizer.pos_new_list) |
130
|
|
|
print(" n_new_scores", optimizer.score_new_list) |
131
|
|
|
|
132
|
|
|
assert n_new_positions == n_iter |
133
|
|
|
assert n_new_scores == n_iter |
134
|
|
|
|
135
|
|
|
assert n_current_positions == n_current_scores |
136
|
|
|
assert n_current_positions <= n_new_positions |
137
|
|
|
|
138
|
|
|
assert n_best_positions == n_best_scores |
139
|
|
|
assert n_best_positions <= n_new_positions |
140
|
|
|
|
141
|
|
|
assert n_new_positions == n_new_scores |
142
|
|
|
|