1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from gradient_free_optimizers import SimulatedAnnealingOptimizer |
8
|
|
|
|
9
|
|
|
n_iter = 100 |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
def get_score(pos_new): |
13
|
|
|
return -(pos_new[0] * pos_new[0]) |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
space_dim = np.array([10]) |
17
|
|
|
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])] |
18
|
|
|
|
19
|
|
|
|
20
|
|
View Code Duplication |
def _base_test(opt, init_positions): |
|
|
|
|
21
|
|
|
for nth_init in range(len(init_positions)): |
22
|
|
|
pos_new = opt.init_pos(nth_init) |
23
|
|
|
score_new = get_score(pos_new) |
24
|
|
|
opt.evaluate(score_new) |
25
|
|
|
|
26
|
|
|
for nth_iter in range(len(init_positions), n_iter): |
27
|
|
|
pos_new = opt.iterate(nth_iter) |
28
|
|
|
score_new = get_score(pos_new) |
29
|
|
|
opt.evaluate(score_new) |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def _test_SimulatedAnnealingOptimizer( |
33
|
|
|
init_positions=init_positions, space_dim=space_dim, opt_para={} |
34
|
|
|
): |
35
|
|
|
opt = SimulatedAnnealingOptimizer(init_positions, space_dim, opt_para) |
36
|
|
|
_base_test(opt, init_positions) |
37
|
|
|
|
38
|
|
|
|
39
|
|
|
def test_annealing_rate(): |
40
|
|
|
for annealing_rate in [1, 0.001]: |
41
|
|
|
opt_para = {"annealing_rate": annealing_rate} |
42
|
|
|
_test_SimulatedAnnealingOptimizer(opt_para=opt_para) |
43
|
|
|
|
44
|
|
|
|
45
|
|
|
def test_start_temp(): |
46
|
|
|
for start_temp in [0.001, 10000]: |
47
|
|
|
opt_para = {"start_temp": start_temp} |
48
|
|
|
_test_SimulatedAnnealingOptimizer(opt_para=opt_para) |
49
|
|
|
|