Code Duplication    Length = 10-10 lines in 13 locations

tests/TabuSearch.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_TabuOptimizer(

tests/EvolutionStrategy.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_EvolutionStrategyOptimizer(

tests/HillClimbing.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_HillClimbingOptimizer(

tests/RandomAnnealing.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_RandomAnnealingOptimizer(

tests/TPE.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_TreeStructuredParzenEstimators(

tests/Bayesian.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_BayesianOptimizer(opt_para):

tests/RandomRestartHillClimbing.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_RandomRestartHillClimbingOptimizer(

tests/StochasticHillClimbing.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_StochasticHillClimbingOptimizer(

tests/ParticleSwarm.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_ParticleSwarmOptimizer(

tests/ParallelTempering.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_ParallelTemperingOptimizer(

tests/SimulatedAnnealing.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_SimulatedAnnealingOptimizer(

tests/DecisionTree.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_DecisionTreeOptimizer(opt_para):

tests/StochasticTunneling.py 1 location

@@ 20-29 (lines=10) @@
17
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])]
18
19
20
def _base_test(opt, init_positions):
21
    for nth_init in range(len(init_positions)):
22
        pos_new = opt.init_pos(nth_init)
23
        score_new = get_score(pos_new)
24
        opt.evaluate(score_new)
25
26
    for nth_iter in range(len(init_positions), n_iter):
27
        pos_new = opt.iterate(nth_iter)
28
        score_new = get_score(pos_new)
29
        opt.evaluate(score_new)
30
31
32
def _test_StochasticTunnelingOptimizer(