1
|
|
|
# Author: Simon Blanke |
2
|
|
|
# Email: [email protected] |
3
|
|
|
# License: MIT License |
4
|
|
|
|
5
|
|
|
import numpy as np |
6
|
|
|
|
7
|
|
|
from gradient_free_optimizers import ParticleSwarmOptimizer |
8
|
|
|
|
9
|
|
|
n_iter = 100 |
10
|
|
|
|
11
|
|
|
|
12
|
|
|
def get_score(pos_new): |
13
|
|
|
return -(pos_new[0] * pos_new[0]) |
14
|
|
|
|
15
|
|
|
|
16
|
|
|
space_dim = np.array([10]) |
17
|
|
|
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])] |
18
|
|
|
|
19
|
|
|
|
20
|
|
View Code Duplication |
def _base_test(opt, init_positions): |
|
|
|
|
21
|
|
|
for nth_init in range(len(init_positions)): |
22
|
|
|
pos_new = opt.init_pos(nth_init) |
23
|
|
|
score_new = get_score(pos_new) |
24
|
|
|
opt.evaluate(score_new) |
25
|
|
|
|
26
|
|
|
for nth_iter in range(len(init_positions), n_iter): |
27
|
|
|
pos_new = opt.iterate(nth_iter) |
28
|
|
|
score_new = get_score(pos_new) |
29
|
|
|
opt.evaluate(score_new) |
30
|
|
|
|
31
|
|
|
|
32
|
|
|
def _test_ParticleSwarmOptimizer( |
33
|
|
|
init_positions=init_positions, space_dim=space_dim, opt_para={} |
34
|
|
|
): |
35
|
|
|
opt = ParticleSwarmOptimizer(init_positions, space_dim, opt_para) |
36
|
|
|
_base_test(opt, init_positions) |
37
|
|
|
|
38
|
|
|
|
39
|
|
View Code Duplication |
def test_individuals(): |
|
|
|
|
40
|
|
|
for init_positions in [ |
41
|
|
|
[np.array([0])], |
42
|
|
|
[np.array([0]), np.array([0])], |
43
|
|
|
[np.array([0]), np.array([0])], |
44
|
|
|
[ |
45
|
|
|
np.array([0]), |
46
|
|
|
np.array([0]), |
47
|
|
|
np.array([0]), |
48
|
|
|
np.array([0]), |
49
|
|
|
np.array([0]), |
50
|
|
|
np.array([0]), |
51
|
|
|
np.array([0]), |
52
|
|
|
np.array([0]), |
53
|
|
|
np.array([0]), |
54
|
|
|
np.array([0]), |
55
|
|
|
np.array([0]), |
56
|
|
|
np.array([0]), |
57
|
|
|
np.array([0]), |
58
|
|
|
np.array([0]), |
59
|
|
|
np.array([0]), |
60
|
|
|
np.array([0]), |
61
|
|
|
np.array([0]), |
62
|
|
|
np.array([0]), |
63
|
|
|
], |
64
|
|
|
]: |
65
|
|
|
_test_ParticleSwarmOptimizer(init_positions) |
66
|
|
|
|
67
|
|
|
|
68
|
|
|
def test_inertia(): |
69
|
|
|
for inertia in [0.1, 0.9]: |
70
|
|
|
opt_para = {"inertia": inertia} |
71
|
|
|
_test_ParticleSwarmOptimizer(opt_para=opt_para) |
72
|
|
|
|
73
|
|
|
|
74
|
|
|
def test_cognitive_weight(): |
75
|
|
|
for cognitive_weight in [0.1, 0.9]: |
76
|
|
|
opt_para = {"cognitive_weight": cognitive_weight} |
77
|
|
|
_test_ParticleSwarmOptimizer(opt_para=opt_para) |
78
|
|
|
|
79
|
|
|
|
80
|
|
|
def test_social_weight(): |
81
|
|
|
for social_weight in [0.1, 0.9]: |
82
|
|
|
opt_para = {"social_weight": social_weight} |
83
|
|
|
_test_ParticleSwarmOptimizer(opt_para=opt_para) |
84
|
|
|
|