|
1
|
|
|
# Author: Simon Blanke |
|
2
|
|
|
# Email: [email protected] |
|
3
|
|
|
# License: MIT License |
|
4
|
|
|
|
|
5
|
|
|
import numpy as np |
|
6
|
|
|
|
|
7
|
|
|
from gradient_free_optimizers import EvolutionStrategyOptimizer |
|
8
|
|
|
|
|
9
|
|
|
n_iter = 100 |
|
10
|
|
|
|
|
11
|
|
|
|
|
12
|
|
|
def get_score(pos_new): |
|
13
|
|
|
return -(pos_new[0] * pos_new[0]) |
|
14
|
|
|
|
|
15
|
|
|
|
|
16
|
|
|
space_dim = np.array([10]) |
|
17
|
|
|
init_positions = [np.array([0]), np.array([1]), np.array([2]), np.array([3])] |
|
18
|
|
|
|
|
19
|
|
|
|
|
20
|
|
View Code Duplication |
def _base_test(opt, init_positions): |
|
|
|
|
|
|
21
|
|
|
for nth_init in range(len(init_positions)): |
|
22
|
|
|
pos_new = opt.init_pos(nth_init) |
|
23
|
|
|
score_new = get_score(pos_new) |
|
24
|
|
|
opt.evaluate(score_new) |
|
25
|
|
|
|
|
26
|
|
|
for nth_iter in range(len(init_positions), n_iter): |
|
27
|
|
|
pos_new = opt.iterate(nth_iter) |
|
28
|
|
|
score_new = get_score(pos_new) |
|
29
|
|
|
opt.evaluate(score_new) |
|
30
|
|
|
|
|
31
|
|
|
|
|
32
|
|
|
def _test_EvolutionStrategyOptimizer( |
|
33
|
|
|
init_positions=init_positions, space_dim=space_dim, opt_para={} |
|
34
|
|
|
): |
|
35
|
|
|
opt = EvolutionStrategyOptimizer(init_positions, space_dim, opt_para) |
|
36
|
|
|
_base_test(opt, init_positions) |
|
37
|
|
|
|
|
38
|
|
|
|
|
39
|
|
View Code Duplication |
def test_individuals(): |
|
|
|
|
|
|
40
|
|
|
for init_positions in [ |
|
41
|
|
|
[np.array([0])], |
|
42
|
|
|
[np.array([0]), np.array([0])], |
|
43
|
|
|
[np.array([0]), np.array([0])], |
|
44
|
|
|
[ |
|
45
|
|
|
np.array([0]), |
|
46
|
|
|
np.array([0]), |
|
47
|
|
|
np.array([0]), |
|
48
|
|
|
np.array([0]), |
|
49
|
|
|
np.array([0]), |
|
50
|
|
|
np.array([0]), |
|
51
|
|
|
np.array([0]), |
|
52
|
|
|
np.array([0]), |
|
53
|
|
|
np.array([0]), |
|
54
|
|
|
np.array([0]), |
|
55
|
|
|
np.array([0]), |
|
56
|
|
|
np.array([0]), |
|
57
|
|
|
np.array([0]), |
|
58
|
|
|
np.array([0]), |
|
59
|
|
|
np.array([0]), |
|
60
|
|
|
np.array([0]), |
|
61
|
|
|
np.array([0]), |
|
62
|
|
|
np.array([0]), |
|
63
|
|
|
], |
|
64
|
|
|
]: |
|
65
|
|
|
_test_EvolutionStrategyOptimizer(init_positions) |
|
66
|
|
|
|
|
67
|
|
|
|
|
68
|
|
|
def test_mutation_rate(): |
|
69
|
|
|
for mutation_rate in [0.1, 0.9]: |
|
70
|
|
|
opt_para = {"mutation_rate": mutation_rate} |
|
71
|
|
|
_test_EvolutionStrategyOptimizer(opt_para=opt_para) |
|
72
|
|
|
|
|
73
|
|
|
|
|
74
|
|
|
def test_crossover_rate(): |
|
75
|
|
|
for crossover_rate in [0.1, 0.9]: |
|
76
|
|
|
opt_para = {"crossover_rate": crossover_rate} |
|
77
|
|
|
_test_EvolutionStrategyOptimizer(opt_para=opt_para) |
|
78
|
|
|
|