|
1
|
|
|
import numpy as np |
|
2
|
|
|
from gradient_free_optimizers import RandomSearchOptimizer |
|
3
|
|
|
|
|
4
|
|
|
|
|
5
|
|
|
def objective_function(para): |
|
6
|
|
|
score = -para["x1"] * para["x1"] |
|
7
|
|
|
return score |
|
8
|
|
|
|
|
9
|
|
|
|
|
10
|
|
|
search_space = { |
|
11
|
|
|
"x1": np.arange(-100, 101, 1), |
|
12
|
|
|
} |
|
13
|
|
|
|
|
14
|
|
|
|
|
15
|
|
|
def test_initialize_warm_start_0(): |
|
16
|
|
|
init = { |
|
17
|
|
|
"x1": 0, |
|
18
|
|
|
} |
|
19
|
|
|
|
|
20
|
|
|
initialize = {"warm_start": [init]} |
|
21
|
|
|
|
|
22
|
|
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
23
|
|
|
opt.search(objective_function, n_iter=1) |
|
24
|
|
|
|
|
25
|
|
|
# print("\nself.results \n", opt.results) |
|
26
|
|
|
|
|
27
|
|
|
assert abs(opt.best_score) < 0.001 |
|
28
|
|
|
|
|
29
|
|
|
|
|
30
|
|
View Code Duplication |
def test_initialize_warm_start_1(): |
|
|
|
|
|
|
31
|
|
|
search_space = { |
|
32
|
|
|
"x1": np.arange(-10, 10, 1), |
|
33
|
|
|
} |
|
34
|
|
|
init = { |
|
35
|
|
|
"x1": -10, |
|
36
|
|
|
} |
|
37
|
|
|
|
|
38
|
|
|
initialize = {"warm_start": [init]} |
|
39
|
|
|
|
|
40
|
|
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
41
|
|
|
opt.search(objective_function, n_iter=1) |
|
42
|
|
|
|
|
43
|
|
|
assert opt.best_para == init |
|
44
|
|
|
|
|
45
|
|
|
|
|
46
|
|
View Code Duplication |
def test_initialize_warm_start_2(): |
|
|
|
|
|
|
47
|
|
|
search_space = { |
|
48
|
|
|
"x1": np.arange(-10, 10, 1), |
|
49
|
|
|
} |
|
50
|
|
|
init = { |
|
51
|
|
|
"x1": -10, |
|
52
|
|
|
} |
|
53
|
|
|
|
|
54
|
|
|
initialize = {"warm_start": [init], "random": 0, "vertices": 0, "grid": 0} |
|
55
|
|
|
|
|
56
|
|
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
57
|
|
|
opt.search(objective_function, n_iter=1) |
|
58
|
|
|
|
|
59
|
|
|
assert opt.best_para == init |
|
60
|
|
|
|
|
61
|
|
|
|
|
62
|
|
|
def test_initialize_vertices(): |
|
63
|
|
|
initialize = {"vertices": 2} |
|
64
|
|
|
|
|
65
|
|
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
66
|
|
|
opt.search(objective_function, n_iter=2) |
|
67
|
|
|
|
|
68
|
|
|
assert abs(opt.best_score) - 10000 < 0.001 |
|
69
|
|
|
|
|
70
|
|
|
|
|
71
|
|
View Code Duplication |
def test_initialize_grid_0(): |
|
|
|
|
|
|
72
|
|
|
search_space = { |
|
73
|
|
|
"x1": np.arange(-1, 2, 1), |
|
74
|
|
|
} |
|
75
|
|
|
initialize = {"grid": 1} |
|
76
|
|
|
|
|
77
|
|
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
78
|
|
|
opt.search(objective_function, n_iter=1) |
|
79
|
|
|
|
|
80
|
|
|
assert abs(opt.best_score) < 0.001 |
|
81
|
|
|
|
|
82
|
|
|
|
|
83
|
|
View Code Duplication |
def test_initialize_grid_1(): |
|
|
|
|
|
|
84
|
|
|
search_space = { |
|
85
|
|
|
"x1": np.arange(-2, 3, 1), |
|
86
|
|
|
} |
|
87
|
|
|
|
|
88
|
|
|
initialize = {"grid": 1} |
|
89
|
|
|
|
|
90
|
|
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
91
|
|
|
opt.search(objective_function, n_iter=1) |
|
92
|
|
|
|
|
93
|
|
|
assert abs(opt.best_score) - 1 < 0.001 |
|
94
|
|
|
|