|
@@ 46-59 (lines=14) @@
|
| 43 |
|
assert opt.best_para == init |
| 44 |
|
|
| 45 |
|
|
| 46 |
|
def test_initialize_warm_start_2(): |
| 47 |
|
search_space = { |
| 48 |
|
"x1": np.arange(-10, 10, 1), |
| 49 |
|
} |
| 50 |
|
init = { |
| 51 |
|
"x1": -10, |
| 52 |
|
} |
| 53 |
|
|
| 54 |
|
initialize = {"warm_start": [init], "random": 0, "vertices": 0, "grid": 0} |
| 55 |
|
|
| 56 |
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
| 57 |
|
opt.search(objective_function, n_iter=1) |
| 58 |
|
|
| 59 |
|
assert opt.best_para == init |
| 60 |
|
|
| 61 |
|
|
| 62 |
|
def test_initialize_vertices(): |
|
@@ 30-43 (lines=14) @@
|
| 27 |
|
assert abs(opt.best_score) < 0.001 |
| 28 |
|
|
| 29 |
|
|
| 30 |
|
def test_initialize_warm_start_1(): |
| 31 |
|
search_space = { |
| 32 |
|
"x1": np.arange(-10, 10, 1), |
| 33 |
|
} |
| 34 |
|
init = { |
| 35 |
|
"x1": -10, |
| 36 |
|
} |
| 37 |
|
|
| 38 |
|
initialize = {"warm_start": [init]} |
| 39 |
|
|
| 40 |
|
opt = RandomSearchOptimizer(search_space, initialize=initialize) |
| 41 |
|
opt.search(objective_function, n_iter=1) |
| 42 |
|
|
| 43 |
|
assert opt.best_para == init |
| 44 |
|
|
| 45 |
|
|
| 46 |
|
def test_initialize_warm_start_2(): |