@@ 46-59 (lines=14) @@ | ||
43 | assert opt.best_para == init |
|
44 | ||
45 | ||
46 | def test_initialize_warm_start_2(): |
|
47 | search_space = { |
|
48 | "x1": np.arange(-10, 10, 1), |
|
49 | } |
|
50 | init = { |
|
51 | "x1": -10, |
|
52 | } |
|
53 | ||
54 | initialize = {"warm_start": [init], "random": 0, "vertices": 0, "grid": 0} |
|
55 | ||
56 | opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
57 | opt.search(objective_function, n_iter=1) |
|
58 | ||
59 | assert opt.best_para == init |
|
60 | ||
61 | ||
62 | def test_initialize_vertices(): |
|
@@ 30-43 (lines=14) @@ | ||
27 | assert abs(opt.best_score) < 0.001 |
|
28 | ||
29 | ||
30 | def test_initialize_warm_start_1(): |
|
31 | search_space = { |
|
32 | "x1": np.arange(-10, 10, 1), |
|
33 | } |
|
34 | init = { |
|
35 | "x1": -10, |
|
36 | } |
|
37 | ||
38 | initialize = {"warm_start": [init]} |
|
39 | ||
40 | opt = RandomSearchOptimizer(search_space, initialize=initialize) |
|
41 | opt.search(objective_function, n_iter=1) |
|
42 | ||
43 | assert opt.best_para == init |
|
44 | ||
45 | ||
46 | def test_initialize_warm_start_2(): |