Passed
Push — master ( 7ebd63...8bd9a3 )
by Simon
06:11
created

gradient_free_optimizers.optimizer_search.lipschitz_optimizer   A

Complexity

Total Complexity 1

Size/Duplication

Total Lines 70
Duplicated Lines 84.29 %

Importance

Changes 0
Metric Value
wmc 1
eloc 30
dl 59
loc 70
rs 10
c 0
b 0
f 0

1 Method

Rating   Name   Duplication   Size   Complexity  
A LipschitzOptimizer.__init__() 26 26 1

How to fix   Duplicated Code   

Duplicated Code

Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.

Common duplication problems, and corresponding solutions are:

1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
from typing import List, Dict, Literal
6
7
from ..search import Search
8
from ..optimizers import LipschitzOptimizer as _LipschitzOptimizer
9
10
11 View Code Duplication
class LipschitzOptimizer(_LipschitzOptimizer, Search):
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
12
    """
13
    A class implementing the **lipschitz optimizer** for the public API.
14
    Inheriting from the `Search`-class to get the `search`-method and from
15
    the `LipschitzOptimizer`-backend to get the underlying algorithm.
16
17
    Parameters
18
    ----------
19
    search_space : dict[str, list]
20
        The search space to explore. A dictionary with parameter
21
        names as keys and a numpy array as values.
22
    initialize : dict[str, int]
23
        The method to generate initial positions. A dictionary with
24
        the following key literals and the corresponding value type:
25
        {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]}
26
    constraints : list[callable]
27
        A list of constraints, where each constraint is a callable.
28
        The callable returns `True` or `False` dependend on the input parameters.
29
    random_state : None, int
30
        If None, create a new random state. If int, create a new random state
31
        seeded with the value.
32
    rand_rest_p : float
33
        The probability of a random iteration during the the search process.
34
    warm_start_smbo
35
        The warm start for SMBO.
36
    max_sample_size : int
37
        The maximum number of points to sample.
38
    sampling : dict
39
        The sampling method to use.
40
    replacement : bool
41
        Whether to sample with replacement.
42
    """
43
44
    def __init__(
45
        self,
46
        search_space: Dict[str, list],
47
        initialize: Dict[
48
            Literal["grid", "vertices", "random", "warm_start"], int | List
49
        ] = {"grid": 4, "random": 2, "vertices": 4},
50
        constraints: List[callable] = [],
51
        random_state: int = None,
52
        rand_rest_p: float = 0,
53
        nth_process: int = None,
54
        warm_start_smbo=None,
55
        max_sample_size: int = 10000000,
56
        sampling: Dict[Literal["random"], int] = {"random": 1000000},
57
        replacement: bool = True,
58
    ):
59
        super().__init__(
60
            search_space=search_space,
61
            initialize=initialize,
62
            constraints=constraints,
63
            random_state=random_state,
64
            rand_rest_p=rand_rest_p,
65
            nth_process=nth_process,
66
            warm_start_smbo=warm_start_smbo,
67
            max_sample_size=max_sample_size,
68
            sampling=sampling,
69
            replacement=replacement,
70
        )
71