| @@ 11-81 (lines=71) @@ | ||
| 8 | from ..optimizers import ForestOptimizer as _ForestOptimizer |
|
| 9 | ||
| 10 | ||
| 11 | class ForestOptimizer(_ForestOptimizer, Search): |
|
| 12 | """ |
|
| 13 | A class implementing the **forest optimizer** for the public API. |
|
| 14 | Inheriting from the `Search`-class to get the `search`-method and from |
|
| 15 | the `ForestOptimizer`-backend to get the underlying algorithm. |
|
| 16 | ||
| 17 | Parameters |
|
| 18 | ---------- |
|
| 19 | search_space : dict[str, list] |
|
| 20 | The search space to explore. A dictionary with parameter |
|
| 21 | names as keys and a numpy array as values. |
|
| 22 | initialize : dict[str, int] |
|
| 23 | The method to generate initial positions. A dictionary with |
|
| 24 | the following key literals and the corresponding value type: |
|
| 25 | {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
|
| 26 | constraints : list[callable] |
|
| 27 | A list of constraints, where each constraint is a callable. |
|
| 28 | The callable returns `True` or `False` dependend on the input parameters. |
|
| 29 | random_state : None, int |
|
| 30 | If None, create a new random state. If int, create a new random state |
|
| 31 | seeded with the value. |
|
| 32 | rand_rest_p : float |
|
| 33 | The probability of a random iteration during the the search process. |
|
| 34 | warm_start_smbo |
|
| 35 | The warm start for SMBO. |
|
| 36 | max_sample_size : int |
|
| 37 | The maximum number of points to sample. |
|
| 38 | sampling : dict |
|
| 39 | The sampling method to use. |
|
| 40 | replacement : bool |
|
| 41 | Whether to sample with replacement. |
|
| 42 | tree_regressor : str |
|
| 43 | The tree regressor model to use. |
|
| 44 | tree_para : dict |
|
| 45 | The model specific parameters for the tree regressor. |
|
| 46 | xi : float |
|
| 47 | The xi parameter for the tree regressor. |
|
| 48 | """ |
|
| 49 | ||
| 50 | def __init__( |
|
| 51 | self, |
|
| 52 | search_space: Dict[str, list], |
|
| 53 | initialize: Dict[ |
|
| 54 | Literal["grid", "vertices", "random", "warm_start"], int | List |
|
| 55 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
| 56 | constraints: List[callable] = [], |
|
| 57 | random_state: int = None, |
|
| 58 | rand_rest_p: float = 0, |
|
| 59 | nth_process: int = None, |
|
| 60 | warm_start_smbo=None, |
|
| 61 | max_sample_size: int = 10000000, |
|
| 62 | sampling: Dict[Literal["random"], int] = {"random": 1000000}, |
|
| 63 | replacement: bool = True, |
|
| 64 | tree_regressor="extra_tree", |
|
| 65 | tree_para={"n_estimators": 100}, |
|
| 66 | xi=0.03, |
|
| 67 | ): |
|
| 68 | super().__init__( |
|
| 69 | search_space=search_space, |
|
| 70 | initialize=initialize, |
|
| 71 | constraints=constraints, |
|
| 72 | random_state=random_state, |
|
| 73 | rand_rest_p=rand_rest_p, |
|
| 74 | nth_process=nth_process, |
|
| 75 | warm_start_smbo=warm_start_smbo, |
|
| 76 | max_sample_size=max_sample_size, |
|
| 77 | sampling=sampling, |
|
| 78 | replacement=replacement, |
|
| 79 | tree_regressor=tree_regressor, |
|
| 80 | tree_para=tree_para, |
|
| 81 | xi=xi, |
|
| 82 | ) |
|
| 83 | ||
| @@ 12-78 (lines=67) @@ | ||
| 9 | from ..optimizers.smb_opt.bayesian_optimization import gaussian_process |
|
| 10 | ||
| 11 | ||
| 12 | class BayesianOptimizer(_BayesianOptimizer, Search): |
|
| 13 | """ |
|
| 14 | A class implementing the **bayesian optimizer** for the public API. |
|
| 15 | Inheriting from the `Search`-class to get the `search`-method and from |
|
| 16 | the `BayesianOptimizer`-backend to get the underlying algorithm. |
|
| 17 | ||
| 18 | Parameters |
|
| 19 | ---------- |
|
| 20 | search_space : dict[str, list] |
|
| 21 | The search space to explore. A dictionary with parameter |
|
| 22 | names as keys and a numpy array as values. |
|
| 23 | initialize : dict[str, int] |
|
| 24 | The method to generate initial positions. A dictionary with |
|
| 25 | the following key literals and the corresponding value type: |
|
| 26 | {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
|
| 27 | constraints : list[callable] |
|
| 28 | A list of constraints, where each constraint is a callable. |
|
| 29 | The callable returns `True` or `False` dependend on the input parameters. |
|
| 30 | random_state : None, int |
|
| 31 | If None, create a new random state. If int, create a new random state |
|
| 32 | seeded with the value. |
|
| 33 | rand_rest_p : float |
|
| 34 | The probability of a random iteration during the the search process. |
|
| 35 | warm_start_smbo |
|
| 36 | The warm start for SMBO. |
|
| 37 | max_sample_size : int |
|
| 38 | The maximum number of points to sample. |
|
| 39 | sampling : dict |
|
| 40 | The sampling method to use. |
|
| 41 | replacement : bool |
|
| 42 | Whether to sample with replacement. |
|
| 43 | gpr : dict |
|
| 44 | The Gaussian Process Regressor to use. |
|
| 45 | xi : float |
|
| 46 | The exploration-exploitation trade-off parameter. |
|
| 47 | """ |
|
| 48 | ||
| 49 | def __init__( |
|
| 50 | self, |
|
| 51 | search_space: Dict[str, list], |
|
| 52 | initialize: Dict[ |
|
| 53 | Literal["grid", "vertices", "random", "warm_start"], int | List |
|
| 54 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
| 55 | constraints: List[callable] = [], |
|
| 56 | random_state: int = None, |
|
| 57 | rand_rest_p: float = 0, |
|
| 58 | nth_process: int = None, |
|
| 59 | warm_start_smbo=None, |
|
| 60 | max_sample_size: int = 10000000, |
|
| 61 | sampling: Dict[Literal["random"], int] = {"random": 1000000}, |
|
| 62 | replacement: bool = True, |
|
| 63 | gpr=gaussian_process["gp_nonlinear"], |
|
| 64 | xi: float = 0.03, |
|
| 65 | ): |
|
| 66 | super().__init__( |
|
| 67 | search_space=search_space, |
|
| 68 | initialize=initialize, |
|
| 69 | constraints=constraints, |
|
| 70 | random_state=random_state, |
|
| 71 | rand_rest_p=rand_rest_p, |
|
| 72 | nth_process=nth_process, |
|
| 73 | warm_start_smbo=warm_start_smbo, |
|
| 74 | max_sample_size=max_sample_size, |
|
| 75 | sampling=sampling, |
|
| 76 | replacement=replacement, |
|
| 77 | gpr=gpr, |
|
| 78 | xi=xi, |
|
| 79 | ) |
|
| 80 | ||
| @@ 13-75 (lines=63) @@ | ||
| 10 | ) |
|
| 11 | ||
| 12 | ||
| 13 | class TreeStructuredParzenEstimators(_TreeStructuredParzenEstimators, Search): |
|
| 14 | """ |
|
| 15 | A class implementing **tree structured parzen estimators** for the public API. |
|
| 16 | Inheriting from the `Search`-class to get the `search`-method and from |
|
| 17 | the `TreeStructuredParzenEstimators`-backend to get the underlying algorithm. |
|
| 18 | ||
| 19 | Parameters |
|
| 20 | ---------- |
|
| 21 | search_space : dict[str, list] |
|
| 22 | The search space to explore. A dictionary with parameter |
|
| 23 | names as keys and a numpy array as values. |
|
| 24 | initialize : dict[str, int] |
|
| 25 | The method to generate initial positions. A dictionary with |
|
| 26 | the following key literals and the corresponding value type: |
|
| 27 | {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
|
| 28 | constraints : list[callable] |
|
| 29 | A list of constraints, where each constraint is a callable. |
|
| 30 | The callable returns `True` or `False` dependend on the input parameters. |
|
| 31 | random_state : None, int |
|
| 32 | If None, create a new random state. If int, create a new random state |
|
| 33 | seeded with the value. |
|
| 34 | rand_rest_p : float |
|
| 35 | The probability of a random iteration during the the search process. |
|
| 36 | warm_start_smbo |
|
| 37 | The warm start for SMBO. |
|
| 38 | max_sample_size : int |
|
| 39 | The maximum number of points to sample. |
|
| 40 | sampling : dict |
|
| 41 | The sampling method to use. |
|
| 42 | replacement : bool |
|
| 43 | Whether to sample with replacement. |
|
| 44 | gamma_tpe : float |
|
| 45 | The parameter for the Tree Structured Parzen Estimators |
|
| 46 | """ |
|
| 47 | ||
| 48 | def __init__( |
|
| 49 | self, |
|
| 50 | search_space: Dict[str, list], |
|
| 51 | initialize: Dict[ |
|
| 52 | Literal["grid", "vertices", "random", "warm_start"], int | List |
|
| 53 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
| 54 | constraints: List[callable] = [], |
|
| 55 | random_state: int = None, |
|
| 56 | rand_rest_p: float = 0, |
|
| 57 | nth_process: int = None, |
|
| 58 | warm_start_smbo=None, |
|
| 59 | max_sample_size: int = 10000000, |
|
| 60 | sampling: Dict[Literal["random"], int] = {"random": 1000000}, |
|
| 61 | replacement: bool = True, |
|
| 62 | gamma_tpe=0.2, |
|
| 63 | ): |
|
| 64 | super().__init__( |
|
| 65 | search_space=search_space, |
|
| 66 | initialize=initialize, |
|
| 67 | constraints=constraints, |
|
| 68 | random_state=random_state, |
|
| 69 | rand_rest_p=rand_rest_p, |
|
| 70 | nth_process=nth_process, |
|
| 71 | warm_start_smbo=warm_start_smbo, |
|
| 72 | max_sample_size=max_sample_size, |
|
| 73 | sampling=sampling, |
|
| 74 | replacement=replacement, |
|
| 75 | gamma_tpe=gamma_tpe, |
|
| 76 | ) |
|
| 77 | ||
| @@ 11-69 (lines=59) @@ | ||
| 8 | from ..optimizers import LipschitzOptimizer as _LipschitzOptimizer |
|
| 9 | ||
| 10 | ||
| 11 | class LipschitzOptimizer(_LipschitzOptimizer, Search): |
|
| 12 | """ |
|
| 13 | A class implementing the **lipschitz optimizer** for the public API. |
|
| 14 | Inheriting from the `Search`-class to get the `search`-method and from |
|
| 15 | the `LipschitzOptimizer`-backend to get the underlying algorithm. |
|
| 16 | ||
| 17 | Parameters |
|
| 18 | ---------- |
|
| 19 | search_space : dict[str, list] |
|
| 20 | The search space to explore. A dictionary with parameter |
|
| 21 | names as keys and a numpy array as values. |
|
| 22 | initialize : dict[str, int] |
|
| 23 | The method to generate initial positions. A dictionary with |
|
| 24 | the following key literals and the corresponding value type: |
|
| 25 | {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
|
| 26 | constraints : list[callable] |
|
| 27 | A list of constraints, where each constraint is a callable. |
|
| 28 | The callable returns `True` or `False` dependend on the input parameters. |
|
| 29 | random_state : None, int |
|
| 30 | If None, create a new random state. If int, create a new random state |
|
| 31 | seeded with the value. |
|
| 32 | rand_rest_p : float |
|
| 33 | The probability of a random iteration during the the search process. |
|
| 34 | warm_start_smbo |
|
| 35 | The warm start for SMBO. |
|
| 36 | max_sample_size : int |
|
| 37 | The maximum number of points to sample. |
|
| 38 | sampling : dict |
|
| 39 | The sampling method to use. |
|
| 40 | replacement : bool |
|
| 41 | Whether to sample with replacement. |
|
| 42 | """ |
|
| 43 | ||
| 44 | def __init__( |
|
| 45 | self, |
|
| 46 | search_space: Dict[str, list], |
|
| 47 | initialize: Dict[ |
|
| 48 | Literal["grid", "vertices", "random", "warm_start"], int | List |
|
| 49 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
| 50 | constraints: List[callable] = [], |
|
| 51 | random_state: int = None, |
|
| 52 | rand_rest_p: float = 0, |
|
| 53 | nth_process: int = None, |
|
| 54 | warm_start_smbo=None, |
|
| 55 | max_sample_size: int = 10000000, |
|
| 56 | sampling: Dict[Literal["random"], int] = {"random": 1000000}, |
|
| 57 | replacement: bool = True, |
|
| 58 | ): |
|
| 59 | super().__init__( |
|
| 60 | search_space=search_space, |
|
| 61 | initialize=initialize, |
|
| 62 | constraints=constraints, |
|
| 63 | random_state=random_state, |
|
| 64 | rand_rest_p=rand_rest_p, |
|
| 65 | nth_process=nth_process, |
|
| 66 | warm_start_smbo=warm_start_smbo, |
|
| 67 | max_sample_size=max_sample_size, |
|
| 68 | sampling=sampling, |
|
| 69 | replacement=replacement, |
|
| 70 | ) |
|
| 71 | ||
| @@ 11-69 (lines=59) @@ | ||
| 8 | from ..optimizers import DirectAlgorithm as _DirectAlgorithm |
|
| 9 | ||
| 10 | ||
| 11 | class DirectAlgorithm(_DirectAlgorithm, Search): |
|
| 12 | """ |
|
| 13 | A class implementing the **direct algorithm** for the public API. |
|
| 14 | Inheriting from the `Search`-class to get the `search`-method and from |
|
| 15 | the `DirectAlgorithm`-backend to get the underlying algorithm. |
|
| 16 | ||
| 17 | Parameters |
|
| 18 | ---------- |
|
| 19 | search_space : dict[str, list] |
|
| 20 | The search space to explore. A dictionary with parameter |
|
| 21 | names as keys and a numpy array as values. |
|
| 22 | initialize : dict[str, int] |
|
| 23 | The method to generate initial positions. A dictionary with |
|
| 24 | the following key literals and the corresponding value type: |
|
| 25 | {"grid": int, "vertices": int, "random": int, "warm_start": list[dict]} |
|
| 26 | constraints : list[callable] |
|
| 27 | A list of constraints, where each constraint is a callable. |
|
| 28 | The callable returns `True` or `False` dependend on the input parameters. |
|
| 29 | random_state : None, int |
|
| 30 | If None, create a new random state. If int, create a new random state |
|
| 31 | seeded with the value. |
|
| 32 | rand_rest_p : float |
|
| 33 | The probability of a random iteration during the the search process. |
|
| 34 | warm_start_smbo |
|
| 35 | The warm start for SMBO. |
|
| 36 | max_sample_size : int |
|
| 37 | The maximum number of points to sample. |
|
| 38 | sampling : dict |
|
| 39 | The sampling method to use. |
|
| 40 | replacement : bool |
|
| 41 | Whether to sample with replacement. |
|
| 42 | """ |
|
| 43 | ||
| 44 | def __init__( |
|
| 45 | self, |
|
| 46 | search_space: Dict[str, list], |
|
| 47 | initialize: Dict[ |
|
| 48 | Literal["grid", "vertices", "random", "warm_start"], int | List |
|
| 49 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
| 50 | constraints: List[callable] = [], |
|
| 51 | random_state: int = None, |
|
| 52 | rand_rest_p: float = 0, |
|
| 53 | nth_process: int = None, |
|
| 54 | warm_start_smbo=None, |
|
| 55 | max_sample_size: int = 10000000, |
|
| 56 | sampling: Dict[Literal["random"], int] = {"random": 1000000}, |
|
| 57 | replacement: bool = True, |
|
| 58 | ): |
|
| 59 | super().__init__( |
|
| 60 | search_space=search_space, |
|
| 61 | initialize=initialize, |
|
| 62 | constraints=constraints, |
|
| 63 | random_state=random_state, |
|
| 64 | rand_rest_p=rand_rest_p, |
|
| 65 | nth_process=nth_process, |
|
| 66 | warm_start_smbo=warm_start_smbo, |
|
| 67 | max_sample_size=max_sample_size, |
|
| 68 | sampling=sampling, |
|
| 69 | replacement=replacement, |
|
| 70 | ) |
|
| 71 | ||
| @@ 11-37 (lines=27) @@ | ||
| 8 | from ..optimizers import EnsembleOptimizer as _EnsembleOptimizer |
|
| 9 | ||
| 10 | ||
| 11 | class EnsembleOptimizer(_EnsembleOptimizer, Search): |
|
| 12 | def __init__( |
|
| 13 | self, |
|
| 14 | search_space: Dict[str, list], |
|
| 15 | initialize: Dict[ |
|
| 16 | Literal["grid", "vertices", "random", "warm_start"], int | List |
|
| 17 | ] = {"grid": 4, "random": 2, "vertices": 4}, |
|
| 18 | constraints: List[callable] = [], |
|
| 19 | random_state: int = None, |
|
| 20 | rand_rest_p: float = 0, |
|
| 21 | nth_process: int = None, |
|
| 22 | warm_start_smbo=None, |
|
| 23 | max_sample_size: int = 10000000, |
|
| 24 | sampling: Dict[Literal["random"], int] = {"random": 1000000}, |
|
| 25 | replacement: bool = True, |
|
| 26 | ): |
|
| 27 | super().__init__( |
|
| 28 | search_space=search_space, |
|
| 29 | initialize=initialize, |
|
| 30 | constraints=constraints, |
|
| 31 | random_state=random_state, |
|
| 32 | rand_rest_p=rand_rest_p, |
|
| 33 | nth_process=nth_process, |
|
| 34 | warm_start_smbo=warm_start_smbo, |
|
| 35 | max_sample_size=max_sample_size, |
|
| 36 | sampling=sampling, |
|
| 37 | replacement=replacement, |
|
| 38 | ) |
|
| 39 | ||