Passed
Push — master ( 9fd0ae...3f3c18 )
by Simon
02:02 queued 12s
created

tests.test_optimizers.test_large_search_space   A

Complexity

Total Complexity 3

Size/Duplication

Total Lines 37
Duplicated Lines 56.76 %

Importance

Changes 0
Metric Value
eloc 22
dl 21
loc 37
rs 10
c 0
b 0
f 0
wmc 3

3 Functions

Rating   Name   Duplication   Size   Complexity  
A test_large_search_space_0() 10 10 1
A test_large_search_space_1() 11 11 1
A objective_function() 0 2 1

How to fix   Duplicated Code   

Duplicated Code

Duplicate code is one of the most pungent code smells. A rule that is often used is to re-structure code once it is duplicated in three or more places.

Common duplication problems, and corresponding solutions are:

1
import pytest
2
import numpy as np
3
4
from ._parametrize import optimizers
5
6
7
def objective_function(para):
8
    return 1
9
10
11 View Code Duplication
@pytest.mark.parametrize(*optimizers)
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
12
def test_large_search_space_0(Optimizer):
13
14
    search_space = {
15
        "x1": np.arange(0, 1000000),
16
        "x2": np.arange(0, 1000000),
17
        "x3": np.arange(0, 1000000),
18
    }
19
    opt = Optimizer(search_space, initialize={"random": 3})
20
    opt.search(objective_function, n_iter=5, verbosity=False)
21
22
23 View Code Duplication
@pytest.mark.parametrize(*optimizers)
0 ignored issues
show
Duplication introduced by
This code seems to be duplicated in your project.
Loading history...
24
def test_large_search_space_1(Optimizer):
25
26
    search_space = {
27
        "x1": np.arange(0, 1000, 0.001),
28
        "x2": np.arange(0, 1000, 0.001),
29
        "x3": np.arange(0, 1000, 0.001),
30
    }
31
32
    opt = Optimizer(search_space, initialize={"random": 3})
33
    opt.search(objective_function, n_iter=5, verbosity=False)
34
35
36
"""
37
@pytest.mark.parametrize(*optimizers)
38
def test_large_search_space_2(Optimizer):
39
40
    search_space = {
41
        "x1": np.arange(0, 3),
42
        "x2": np.arange(0, 3),
43
        "x3": np.arange(0, 3),
44
        "x4": np.arange(0, 3),
45
        "x5": np.arange(0, 3),
46
        "x6": np.arange(0, 3),
47
        "x7": np.arange(0, 3),
48
        "x8": np.arange(0, 3),
49
        "x9": np.arange(0, 3),
50
        "x10": np.arange(0, 3),
51
        "x11": np.arange(0, 3),
52
        "x12": np.arange(0, 3),
53
        "x13": np.arange(0, 3),
54
        "x14": np.arange(0, 3),
55
        "x15": np.arange(0, 3),
56
        "x16": np.arange(0, 3),
57
        "x17": np.arange(0, 3),
58
        "x18": np.arange(0, 3),
59
        "x19": np.arange(0, 3),
60
        "x20": np.arange(0, 3),
61
        "x21": np.arange(0, 3),
62
        "x22": np.arange(0, 3),
63
        "x23": np.arange(0, 3),
64
        "x24": np.arange(0, 3),
65
        "x25": np.arange(0, 3),
66
        "x26": np.arange(0, 3),
67
        "x27": np.arange(0, 3),
68
        "x28": np.arange(0, 3),
69
        "x29": np.arange(0, 3),
70
        "x30": np.arange(0, 3),
71
        "x31": np.arange(0, 3),
72
        "x32": np.arange(0, 3),
73
        "x33": np.arange(0, 3),
74
    }
75
76
    opt = Optimizer(search_space, initialize={"random": 3})
77
    opt.search(objective_function, n_iter=5, verbosity=False)
78
"""
79