|
1
|
|
|
import pytest |
|
2
|
|
|
import numpy as np |
|
3
|
|
|
|
|
4
|
|
|
from ._parametrize import optimizers |
|
5
|
|
|
|
|
6
|
|
|
|
|
7
|
|
|
def objective_function(para): |
|
8
|
|
|
return 1 |
|
9
|
|
|
|
|
10
|
|
|
|
|
11
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
|
|
12
|
|
|
def test_large_search_space_0(Optimizer): |
|
13
|
|
|
|
|
14
|
|
|
search_space = { |
|
15
|
|
|
"x1": np.arange(0, 1000000), |
|
16
|
|
|
"x2": np.arange(0, 1000000), |
|
17
|
|
|
"x3": np.arange(0, 1000000), |
|
18
|
|
|
} |
|
19
|
|
|
opt = Optimizer(search_space, initialize={"random": 3}) |
|
20
|
|
|
opt.search(objective_function, n_iter=5, verbosity=False) |
|
21
|
|
|
|
|
22
|
|
|
|
|
23
|
|
View Code Duplication |
@pytest.mark.parametrize(*optimizers) |
|
|
|
|
|
|
24
|
|
|
def test_large_search_space_1(Optimizer): |
|
25
|
|
|
|
|
26
|
|
|
search_space = { |
|
27
|
|
|
"x1": np.arange(0, 1000, 0.001), |
|
28
|
|
|
"x2": np.arange(0, 1000, 0.001), |
|
29
|
|
|
"x3": np.arange(0, 1000, 0.001), |
|
30
|
|
|
} |
|
31
|
|
|
|
|
32
|
|
|
opt = Optimizer(search_space, initialize={"random": 3}) |
|
33
|
|
|
opt.search(objective_function, n_iter=5, verbosity=False) |
|
34
|
|
|
|
|
35
|
|
|
|
|
36
|
|
|
""" |
|
37
|
|
|
@pytest.mark.parametrize(*optimizers) |
|
38
|
|
|
def test_large_search_space_2(Optimizer): |
|
39
|
|
|
|
|
40
|
|
|
search_space = { |
|
41
|
|
|
"x1": np.arange(0, 3), |
|
42
|
|
|
"x2": np.arange(0, 3), |
|
43
|
|
|
"x3": np.arange(0, 3), |
|
44
|
|
|
"x4": np.arange(0, 3), |
|
45
|
|
|
"x5": np.arange(0, 3), |
|
46
|
|
|
"x6": np.arange(0, 3), |
|
47
|
|
|
"x7": np.arange(0, 3), |
|
48
|
|
|
"x8": np.arange(0, 3), |
|
49
|
|
|
"x9": np.arange(0, 3), |
|
50
|
|
|
"x10": np.arange(0, 3), |
|
51
|
|
|
"x11": np.arange(0, 3), |
|
52
|
|
|
"x12": np.arange(0, 3), |
|
53
|
|
|
"x13": np.arange(0, 3), |
|
54
|
|
|
"x14": np.arange(0, 3), |
|
55
|
|
|
"x15": np.arange(0, 3), |
|
56
|
|
|
"x16": np.arange(0, 3), |
|
57
|
|
|
"x17": np.arange(0, 3), |
|
58
|
|
|
"x18": np.arange(0, 3), |
|
59
|
|
|
"x19": np.arange(0, 3), |
|
60
|
|
|
"x20": np.arange(0, 3), |
|
61
|
|
|
"x21": np.arange(0, 3), |
|
62
|
|
|
"x22": np.arange(0, 3), |
|
63
|
|
|
"x23": np.arange(0, 3), |
|
64
|
|
|
"x24": np.arange(0, 3), |
|
65
|
|
|
"x25": np.arange(0, 3), |
|
66
|
|
|
"x26": np.arange(0, 3), |
|
67
|
|
|
"x27": np.arange(0, 3), |
|
68
|
|
|
"x28": np.arange(0, 3), |
|
69
|
|
|
"x29": np.arange(0, 3), |
|
70
|
|
|
"x30": np.arange(0, 3), |
|
71
|
|
|
"x31": np.arange(0, 3), |
|
72
|
|
|
"x32": np.arange(0, 3), |
|
73
|
|
|
"x33": np.arange(0, 3), |
|
74
|
|
|
} |
|
75
|
|
|
|
|
76
|
|
|
opt = Optimizer(search_space, initialize={"random": 3}) |
|
77
|
|
|
opt.search(objective_function, n_iter=5, verbosity=False) |
|
78
|
|
|
""" |
|
79
|
|
|
|