|
@@ 23-33 (lines=11) @@
|
| 20 |
|
opt.search(objective_function, n_iter=5, verbosity=False) |
| 21 |
|
|
| 22 |
|
|
| 23 |
|
@pytest.mark.parametrize(*optimizers) |
| 24 |
|
def test_large_search_space_1(Optimizer): |
| 25 |
|
|
| 26 |
|
search_space = { |
| 27 |
|
"x1": np.arange(0, 1000, 0.001), |
| 28 |
|
"x2": np.arange(0, 1000, 0.001), |
| 29 |
|
"x3": np.arange(0, 1000, 0.001), |
| 30 |
|
} |
| 31 |
|
|
| 32 |
|
opt = Optimizer(search_space, initialize={"random": 3}) |
| 33 |
|
opt.search(objective_function, n_iter=5, verbosity=False) |
| 34 |
|
|
| 35 |
|
|
| 36 |
|
""" |
|
@@ 11-20 (lines=10) @@
|
| 8 |
|
return 1 |
| 9 |
|
|
| 10 |
|
|
| 11 |
|
@pytest.mark.parametrize(*optimizers) |
| 12 |
|
def test_large_search_space_0(Optimizer): |
| 13 |
|
|
| 14 |
|
search_space = { |
| 15 |
|
"x1": np.arange(0, 1000000), |
| 16 |
|
"x2": np.arange(0, 1000000), |
| 17 |
|
"x3": np.arange(0, 1000000), |
| 18 |
|
} |
| 19 |
|
opt = Optimizer(search_space, initialize={"random": 3}) |
| 20 |
|
opt.search(objective_function, n_iter=5, verbosity=False) |
| 21 |
|
|
| 22 |
|
|
| 23 |
|
@pytest.mark.parametrize(*optimizers) |