gradient_free_optimizers.optimizer_search.ensemble_optimizer   A
last analyzed

Complexity

Total Complexity 1

Size/Duplication

Total Lines 39
Duplicated Lines 0 %

Importance

Changes 0
Metric Value
wmc 1
eloc 31
dl 0
loc 39
rs 10
c 0
b 0
f 0

1 Method

Rating   Name   Duplication   Size   Complexity  
A EnsembleOptimizer.__init__() 0 27 1
1
# Author: Simon Blanke
2
# Email: [email protected]
3
# License: MIT License
4
5
from typing import List, Dict, Literal, Union
6
7
from ..search import Search
8
from ..optimizers import EnsembleOptimizer as _EnsembleOptimizer
9
10
11
class EnsembleOptimizer(_EnsembleOptimizer, Search):
12
    def __init__(
13
        self,
14
        search_space: Dict[str, list],
15
        initialize: Dict[
16
            Literal["grid", "vertices", "random", "warm_start"],
17
            Union[int, list[dict]],
18
        ] = {"grid": 4, "random": 2, "vertices": 4},
19
        constraints: List[callable] = [],
20
        random_state: int = None,
21
        rand_rest_p: float = 0,
22
        nth_process: int = None,
23
        warm_start_smbo=None,
24
        max_sample_size: int = 10000000,
25
        sampling: Dict[Literal["random"], int] = {"random": 1000000},
26
        replacement: bool = True,
27
    ):
28
        super().__init__(
29
            search_space=search_space,
30
            initialize=initialize,
31
            constraints=constraints,
32
            random_state=random_state,
33
            rand_rest_p=rand_rest_p,
34
            nth_process=nth_process,
35
            warm_start_smbo=warm_start_smbo,
36
            max_sample_size=max_sample_size,
37
            sampling=sampling,
38
            replacement=replacement,
39
        )
40